
NASA-CR-193619

- __i ¸" - :._'i "i

:/

IMP, EMIgrATION OF _CONNECT SIMULATION TOOLS IN SPICE

: ! __/

/ . ,./21i

9",Z,

by

H. Satsangi
,I. E. Schutt-Aine

_t of Bkctrical and Computer Engineering
" _ersity of Illinois
t_6 W. Green Street

• ?_bana, IL 61801

C

: Technical Report

• August 1993

7

)

Prepared for

NATIONAL AERONAI._ICS AND SPACE ADMINISTRATION

NASA-Ames Research Center

Moff_Field, CA 94035-1000

No. NASA NAG2-823

(NASA-CR-193019) IMPLEMENTATION

INTERCONNECT SIMULATION TOOLS IN

SPICE (I1|inois Univ.) 182 p

OF N93-32239

Unclas

G3/61 0179682

\

UILU-ENG-93-2559

Electromagnetic Communication Laboratory Report No. 93-4

IMPLEMENTATION OF INTERCONNECT SIMULATION TOOLS IN SPICE

by

H. Satsangi
J. E. Schutt-Aine

Department of Electrical and Computer Engineering
University of Illinois
1406 W. Green Street

Urbana, IL 61801

Technical Report
August 1993

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
NASA-Ames Research Center

Moffett Field, CA 94035-1000

Grant No. NASA NAG2-823

Electromagnetic Communication Laboratory
Department of Electrical and Computer Engineering

Engineering Experiment Station
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

iii

ABSTRACT

Accurate computer simulation of high speed digital computer circuits and

communication circuits requires a multimode approach to simulate both the devices and the

interconnects between devices. Classical circuit analysis algorithms (lumped parameter) are

needed for circuit devices and the network formed by the interconnected devices. The

interconnects, however, have to be modeled as transmission lines which incorporate

electromagnetic field analysis.

An approach to writing a multimode simulator is to take an existing software

package which performs either lumped parameter analysis or field analysis and add the

missing type of analysis routines to the package. In this work a traditionally lumped

parameter simulator, SPICE, is modified so that it will perform lossy transmission line

analysis using a difference model approach.

Modifying SPICE3E2 or any other large software package is not a trivial task. An

understanding of the programming conventions used, simulation software, and simulation

algorithms is required. This thesis was written to clarify the procedure for installing a

device into SPICE3E2. The installation of three devices is documented and the installations

of the first two provide a foundation for installation of the lossy line which is the third

device. The details of discussions are specific to SPICE, but the concepts will be helpful

when performing installations into other circuit analysis packages.

iv

TABLE OF CONTENTS

2°

page

INTRODUCTION .. 1

1.1. Background ... 1

1.2. Purpose ... 2

1.3. Contents ... 2

1.4. SPICE3E2 Comments ... 3

°

.

GENERAL OPERATION OF A STAMP ORIENTED SIMULATOR 4

2.1. General Circuit Simulator Flow Chart ... 4

2.2. Circuit Description ... 6

2.3. Construction of Circuit Matrix ... 7

2.3.1. Linear resistor stamp ... 10

2.3.2. Independent voltage source stamp I 1

2.4. Matrix Solution Techniques and Sparsity 15

2.5. Output of Results .. 16

2.6. Notes on Transient and Nonlinear Analysis 16

2.7. Summary .. 20

DERIVATION OF TRANSMISSION LINE STAMPS 21

3.1. Number of Device Nodes and Stamp Size 21

3.1.2. One-port devices .. 22

3.1.2. Two-port stamps .. 23

3.2. Voltage Source/impedance Stamp for the Lossless Transmission
Line .. 23

3.3. Current Source/Admittance Stamp for a Transmission Line 26

3.3.1. Independent current source stamp 26

3.3.2. Lossless transmission line stamp 27

3.3.3. Transient analysis of a lossy transmission line 29

3.4. Stamp Comparison .. 29

3.5. Summary .. 30

V

. OVERVIEW OF ASPECTS OF SPICE3E2 RELEVANT TO DEVICE
INSTALLATION ... 31

4.1. Organization and Conventions in SPICE3E2 Relevant to Device
Installation .. 31

4.1.1. Packages ... 31

4.1.2. Interpackage communication .. 32

4.1.3. Package function naming conventions 33

4.1.4. Devices, models, and instances 34

4.1.5. The CKT data structure .. 35

4.1.6. Summary of relevant organizations and conventions 36

4.2. SPICE3E2 Directory Structure ... 37

4.3. Loading a Device Stamp into the Circuit Matrix in Spice3e2 39

4.3.1. Storage of instance specific data 39

4.3.2. Insertion of a device stamp into the circuit matrix 41

4.4. Loading of Device Data from the Input File 44

4.5. Summary .. 45

. DEVICE INSTALLATION STRATEGY .. 47

5.1. General Approach .. 47

5.2. Specific Strategy 48

5.3. Twelve-Step Plan .. 50

5.4. Summary .. 51

. INSTALLATION OF A NEGATIVE RESISTOR .. 52

6.1. Description of the Negative Resistor Stamp 52

6.2. Description of the Negative Resistor Input File Line 53

6.3. Details of the Twelve-Device Installation Steps for a Negative
Resistor ... 54

6.3.1. Create negative resistor directory 54

6.3.2. Copy files of ordinary resistor 54

6.3.3. Change names in copied device files 55

6.3.4. Change names in copied header files 56

6.3.5. Change names in copied parser file 56

6.3.6. Modify parser header file .. 56

6.3.7. Modify main parsing routine .. 57

6.3.8. Modify simulator files .. 57

6.3.9. Modify files used by make .. 57

6.3.10. Verify establishment of communication with the main
code .. 59

6.3.11. Modify operation of copied device code 59

6.3.12. Check new device operation ... 60

6.4. Summary .. 60

v±

. INSTALLATION OF A LOSSLESS TRANSMISSION LINE MODEL FOR

TRANSIENT ANALYSIS .. 61

7.1. Lossless Transmission Line Models Revisited 61

7.2. Referencing Previous Values ... 62

7.2.1. The delay table .. 62

7.2.2. Delay table management ... 63

7.2.3. Interpolation ... 63

7.2.4. Initial conditions and the delay table 64

7.3. Voltage Source/Impedance Model vs. Current Source/Admittance
Model .. 64

7.4. Summary of Steps 1 Through 10 of the Installation 66

7.5. Changes Comprising Step 11 68

7.5.1. Modifications to ntradefs.h .. 68

7.5.2. Modification to ntrasetup.c .. 68

7.5.3. Modifications to ntraask.c ... 69

7.5.4. Modification of ntraload.c ... 69

7.5.5. Modifications to ntraacct.c ... 70

7.5.6. Modifications to ntratmnc.c ... 70

7.6. Summary .. 71

. INSTALLATION OF A LOSSY TRANSMISSION LINE MODEL FOR
TRANSIENT ANALYSIS ... 72

8.1. Difference Between the Lossy and Lossless Line Stamps 72

8.2. Requirements of the Source Function ... 73

8.3. Modification Strategy .. 74

8.4. Conversion to Lossy Line Model Part I 74

8.4.1. Insert parameter fields into device data structure 75

8.4.2. Modify ntraitf.h ... 75

8.4.3. Modify ntraparam.c .. 75

8.4.4. Modify ntrasetup.c ... 76

8.4.5. Modify ntraload.c ... 76

8.4.6. Modify ntraacct.c ... 78

8.4.7. Modify ntratrunc.c .. 78

8.4.8. Update spice3e2/src/lib/dev/ntra directory, and modify
files used by make .. 79

8.4.9. Verify the model gives the correct results for the specific
line used ... 79

8.5. Conversion to Lossy Line Model Part II 79

8.5.1.

8.5.2.

8.5.3.

8.5.4.

8.5.5.

Write the function ffleread ... 80

Modify ntra.c to include a new parameter 80

Modify NTRAparam to call ffleread 80

Modify ntradefs.h .. 80

Verify the changes worked .. 81

vii

8.6. Transient Analysis Run of the Lossy Line 81

8.6.1. Formulate circuit .. 81

8.6.2. Place line specifications in a file 82

8.6.3. Run vdmdiff ... 83

8.6.4. Write SPICE input file ... 84

8.6.5. Perform analysis .. 84

8.7. Summary .. 85

. CONCLUSIONS .. 87

9.1. Direct Current and Alternating Current Analysis 87

9.1.1. dc analysis ... 87

9.1.2. ac analysis ... 88

9.2. Modifications to Increase Manageability 88

9.2.1. Modularizing NTRAIoad .. 89

9.2.2. NTRAIoadLHS ... 89

9.2.3. NTRAdcLoad ... 90

9.2.4. NTRAIoadUIC .. 90

9.2.5. NTRAloadUdc .. 90

9.2.6. NTRAinitDelTab .. 90

9.2.7. NTRAcalcRHS ... 91

9.2.8. NTRAgetInterpExcitl .. 91

9.2.9. CKTgetSol .. 91

9.2.10. NTRAloadRHS ... 92

9.2.11. CKTgetMode .. 92

9.3. Summary .. 92

APPENDIX A. RESISTOR CODE .. 93

A. 1. Device Specific Files .. 93

A. 1.1. Contents of nresload.c before renaming 93

A. 1.2. Contents of nresload.c after renaming 94

A. 1.3. Contents of nres.c before renaming 95

A. 1.4. Contents of nres.c after renaming 96

A.2. Device Header Files ... 97

A.2.1. nresdefs.h after renaming .. 97

A.2.2. nresext.h after renaming ... 99

A.2.3. nresitf.h after renaming .. 100

A.3. INP2N .. 102

A.3.1. Contents of inp2n.c before renaming 102

A.3.2. Contents of inp2n.c after renaming 105

A.4. Parser Header File ... 107

A.5. INPpas2 ... 108

A.6. Main Parsing Routine ... 109

viii

A.7.

m.8.

A.6.1. Contents of bconf.c after modification 109

A.6.2. Contents of subckt.c after modification 110

Files Used by Make ... 111

A.7.1. Contents of makedefs before modification 111

A.7.2. Contents of msc51.bat before modification 112

A.7.3. Excerpt from defaults after modification 112

A.7.4. Excerpt from response.lib after modication 113

NRESload ".. 113

A.8.1. Excerpt from nresload.c before modification 113

A. 8.2. Excerpt from nresload.c after modification 114

APPENDIX B. LOSSLESS TRANSMISSION LINE CODE 115

B.1. Device Data Structure .. 115

B. 1.1. Contents of ntradefs.h before modification 115

B. 1.2. Contents of ntradefs.h after modification 118

B.2. NTRAsetup ... 120

B.2.1. Contents of ntrasetup.c before modification 120

B.2.2. Contents of ntrasetup.c after modification 122

B.3. NTRAask ... 123

B.4. NTRAload .. 124

B.4.1. Contents of ntraload.c before modification 124

B.4.2. Contents of ntraload.c after modification 126

B.5. NTRAacct ... 129

B.5.1. Contents of ntraacct.c before modification 129

B.5.2. Contents of ntraaccct.c after modification 130

B.6. NTRAtrunc ... 132

B.6.1. Contents of ntratrunc.c before modification 132

B.6.2. Contents of ntratrunc.c after modification 133

APPENDIX C.

C.1.

C.2.

C.3.

C.4.

C.5.

C.6.

C.7.

LOSSY TRANSMISSION LINE CODE 135

Function Decleration and Argument Description of G 135

Contents of an Example Difference Parameters File 138

Header Files .. 139

C.3.1. Contents of ntradefs.h after modification 139

C.3.2. Contents of ntraitf.h .. 142

NTRAparam .. 142

NTRAsetup ... 143

NTRAload .. 147

C.6.1. Contents of ntraload.c before modification 147

C.6.2. Contents of ntraload.c after modification 150

NTRAacct ... 154

C. 7.1. Contents of ntraacct.c before modification 155

ix

C.8.

C.9.

C.10.

C.11.

C.7.2. Contents of ntraacct.c after modification 155

NTRAtrunc ... 156

C.8.1. Contents of ntratrunc.c before modification 156

C.8.2. Contents ofntratrunc.c after modification 157

Listing of the Function fileread ... 158

IFparm Table ... 160

NTRAparam .. 161

APPENDIX D.

D.1.

D.2.

D.3.

D.4.

D.5.

FUTURE CODE MODIFICATIONS 163

Complete listing of NTRAIoad ... 163

Modified NTRAload ... 167

NTRAcalcRHS ... 169

NTRAgetlnterpExcit 1 ... 169

NTRAgetDelTablndGrtr .. 170

REFERENCES .. 172

1. INTRODUCTION

1.1. Background

Computer simulation of circuits has been used for years to test and verify circuit

designs at the gate level or transistor level. Interconnections were originally modeled as

lumped parameter shorts. As device speeds became faster and integrated circuits became

smaller and denser, interconnects could no longer be modeled as lumped parameter shorts.

Instead, the interconnects are now modeled as transmission lines to take into account cross-

talk noise, wave-form distortion, and signal attenuation effects [1].

Simulating circuits at the transistor level which contain interconnects requires that a

circuit simulator have the capability of handling ordinary circuit analysis and

electromagnetic analysis. Simulators which handle both types (or three types if gate level is

included) are termed multimode.

One approach used in writing a multimode simulator is to utilize a standard circuit

analysis package which works for one type of analysis and to add in components which

perform the other analysis types. In this work, transmission line models have been

inserted into a traditionally lumped parameter simulator. The insertion of devices into an

existing circuit analysis package is not a trivial task. Accurate and detailed documentation

of the analysis package is required along with an understanding of the general algorithm

driving the circuit analysis program. An understanding of the programming conventions

used in large software packages is also required.

1.2. Purpose

This thesis describes the insertion of a lossy transmission line model for transient

analysis into the SPICE3E2 circuit analysis program. A lossless and lossy transmission

line model already exist in SPICE3E2 (see [2] for SPICE3E2 lossy line background). A

good introduction to transmission line analysis is found in [3] and much more detail is

found in [4]. The concern of this thesis is not to compare the SPICE indigenous models

with the models to be installed, but to detail the installation procedure for the step invariant

difference model of the lossy transmission line. The thesis has two main purposes. The

first is to document the modifications made to SPICE3E2 in order to incorporate a new

lossy line model, and the second is to elucidate the device installation procedure with

respect to SPICE3E2. The installation of a device into SPICE3E2 was more difficult than

anticipated since the documentation which comes standard with SPICE3E2 (see [5] - [11])

is not up to date with the release and assumes that the reader has a level of familiarity with

the functioning of a circuit simulator code. The documentation which comes standard with

SPICE3E2 is the documentation for SPICE3C, and in the device installation section there is

an omission of one important step.

This thesis can by itself be used as a "how to guide" with respect to device

installation. It is, however, not a replacement for the SPICE3E2 manuals in any other

way, but can be used in conjunction with the SPICE3E2 manuals to gain a better

understanding of the functioning of the SPICE3E2 circuit simulator.

1.3. Contents

Two purposes of the thesis were mentioned in the previous section. The second

purpose was to serve as a device installation tutorial with respect to SPICE3E2. To this

end the thesis is organized in the following fashion: circuit simulator information and

device installation information. Chapter 2 contains general information on circuit analysis

programs such as the general circuit analysis program algorithm and techniques for

implementing each step of the algorithm. Chapter 3 is an extension of Chapter 2 and is

specifically concerned with transmission lines. Chapter 4 discusses the SPICE3E2 circuit

analysis program and, in particular, the background information necessary with respect to

device installation. Chapter 5 gives an overview of the device installation process, and

Chapters6 through8 arestepby stepexamplesof deviceinstallations. Chapter6 details

the installation procedurefor a contrived deviceto illustrate the bookkeepingportion

commonto all device installations. Chapter7 lays thefoundationfor the lossy line by
detailingtheinstallationstepsfor a losslesstransmissionline modelfor transientanalysis.

Chapter8 detailsthe installationof the lossytransmissionlinemodelfor transientanalysis
into SPICE3E2by convertingthe routinesof the losslesstransmissionline installed in

Chapter 7. Chapter9 is the concludingchapter and it discussesand suggestssome

extensionsandmodificationsto SPICE3E2,whichwouldincreasethemanageabilityof the
code.

1.4. SPICE3E2 Comments

The source code for SPICE3E2 is available from UC Berkeley free of charge. The

program is written in the C programming language [12]. In order to make modifications to

the source code, the programmer must be proficient in the C language. The source was

modified when installing the lossy transmission line. Listings of the source code involved

in or modified during device installation are given in the appendices. To conserve space,

only relevant portions of the code listings are shown, and in many cases the header files

associated with a function were not shown. In all cases, a copyright statement associated

with each code listing was not shown. Most of the code that will be shown was originally

written by T. Quarles and the copyright statement associated with the code is shown below.

Copyright 1990 Regents of the University of California. All rights reserved.
Author: 1985 Thomas L. Quarles

4

2. GENERAL OPERATION OF A STAMP
ORIENTED SIMULATOR

This chapter discusses the basics of circuit simulator operation. The general

algorithm and each of its components are examined. The discussion is within the

framework of linear device analysis and confined to resistors and independent voltage

sources. The examples in this chapter apply to SPICE3E2, but the concepts are general.

Implementation details and low level algorithms have been deferred to Chapters 4, 6, 7,

and 8.

2.1. General Circuit Simulator Flow Chart

A general flow chart indicating the major steps in the execution of a circuit analysis

program is shown in Figure 2.1. First, the circuit and simulation descriptions are obtained

from user input. The information from the user is organized in a form most suitable for the

steps to follow. Once the input information is appropriately organized, a matrix equation

Ax=b, (2.1)

where A is an n x n matrix, is constructed. The matrix equation is solved for x, and the

results are made available. Depending on the type of analysis, steps Construct Circuit

Matrix and Solve Matrix may be executed multiple times before all or any of the results are

available.

START

Get Circuit

Description

Construct
Circuit
Matrix

Solve
Matrix

Report
Results

STOP

Figure 2.1. Circuit analysis algorithm in flow chart form.

The details of the algorithms and programming differ from simulator to simulator,

but the overall steps are the same. In the following sections, each of the steps is examined,

and strategies or algorithms are presented. The most important step with respect to this

thesis is the second, Construct Circuit Matrix. The modifications that will be discussed in

the subsequent chapters primarily concern this second step.

2.2. Circuit Description

Analysis of a circuit commences after the circuit and simulation information are

provided by the user. User input is often obtained through a graphical interface.

Alternatively, a text file may be filled by the user, listing the devices, device parameters,

interconnections of the devices, and simulation specifications. Regardless of the manner

used to communicate circuit and simulation descriptions, the information is stored in

simulator data structures for later referral by the matrix construction circuit simulation

routines. The format of the data structure containing the circuit information is the subject of

this section.

Data structure formats are dictated by the algorithms and routines accessing the

structure. Matrix construction algorithms, discussed further in the following section,

access and, therefore, define the format of the circuit description structures.

Equations for a circuit may be written using a node by node application of

Kirchoffs Current Law (KCL). A node by node approach results in a data structure

comprised of a linked list containing elements associated with each node. Among the fields

of the list element would be fields containing node identification information, fields

associated with all elements branching from the node, and fields containing neighbor node

information. Considering a device connected between nodes a and b, the node by node

algorithm references the device once at node a and once at node b. Therefore, the matrix

fill routines must be accessed twice for each device in the circuit.

A more popular algorithm for f'dling a circuit matrix accesses the matrix fill routines

only once per device. This method employs a device by device approach, and is discussed

in more detail in the following section. The device by device routine requires a linked list

similar to that shown in Figure 2.2. In the data structure of Figure 2.2 link elements

include the device identification, a pointer to a device parameter list, a pointer to a list of

nodes connected to the device, a forward pointer, and a backward pointer as a minimum.

Other fields, needed for overhead, are not shown.

Figure 2.2. Linked list structure used with device by device matrix fill
algorithm for storing circuit description.

2.3. Construction of Circuit Matrix

Equations describing a circuit can be written by employing KCL or Kirchoff's

Voltage Law (KVL) analysis [13]. KCL is used in circuit simulators. Nodal analysis of

the circuit given in Figure 2.3 yields Equations (2.2) - (2.9).

Q R1Q II4Q V2 Q

V,®_.,

-_@1__ @

Figure 2.3. Example Circuit 1. Nodes are labeled by encircled numbers.

VI-V2 +Ivl =0
R1

(2.2)

vz-vl wv..:_ .o + v2-v4 =o
R1 R3 R4

(2.3)

%-v2 + v3 +%-v6 =o
R3 R2 R5

(2.4)

V4-V2 +Iv2 =0
R4

(2.5)

V5-V6 Iv2=O
R6

(2.6)

%-% + %-% =o
R6 R5

(2.7)

V 1 =V1 (2.8)

V4-V5 =V2 (2.9)

Equations (2.2) - (2.9) can be rewritten in the following form:

V11 + V 2 + (1)Iv1 = 0 (2.10)

--+ -1
(_11 + R31 _43V2 + (_)V1 + (_3)V3 + (_4)V4 = 0

(2.11)

1+ 1+ (2.12)

() (_1)._44 V4+ -_ V 2+(1)IV2=0
(2.13)

(2.]4)

1 1 -1
(2.15)

(1)V 1 = V1 (2.16)

(1)V4 + (-1)V5 = V2 (2.17)

The equations can be solved systematically by putting them into a matrix of the form of

Equation (2.1) with x = v, and b = s, where v is the voltage and current vector, or the

values of the voltages at all the different nodes and currents in particular branches, and s is

the source vector or the values of independent sources in the circuit.

The resulting matrix is shown in Figure 2.4. This matrix can be solved for the

node voltages V I to V 6 and the branch currents Iv 1 and Iv2. Any other branch currents

can be obtained by using the node voltages and component values. All of which are known

after solving the matrix.

\RI R3 R41

0)

(1) (-1)

(i)

(1)

(-1)

- V1

½
v3
v4
v5
v6
IVI

_Iv2.

V1

V2

Figure 2.4. Matrix for Example Circuit 1.

10

In a circuit analysis program the construction of a matrix, such as shown in Figure

2.4, follows the conversion of user input into a circuit representation (ref. Figure 2.1). A

popular method to construct the matrix employed by circuit simulators, including SPICE,

takes advantage of the fact that each device in the circuit makes an independent contribution

to the circuit matrix. The pattern representing this contribution is termed a stamp.

2.3.1. Linear resistor stamp

A linear resistor contributes to the circuit equations in the same manner for dc, ac,

and transient analysis. The stamp derived in this section is valid for all linear resistors

obeying Equation (2.18) [14].

v = iR (2.18)

Refer to nodes 2, 3, and the resistor R3 between the two nodes from the circuit of

Figure 2.3. It is seen from the matrix (Figure 2.4) that R3 is present only in the rows

corresponding to nodes 2 and 3. R3 is not included in the KCL equation at nodes other

than 2 and 3 since it is connected to only nodes 2 and 3 and is not a control for a dependent

device. KCL at a node takes the form of Equation (2.19).

i I +i 2 +i 3 +...+i n =0 (2.19)

The numbers 1, 2, 3, and n are indices for the branches connected to the node of interest.

All of the currents are assumed to be going out of the node. At node 2, i 1 will be assigned

the current going through R1, i 2 the current going through R4, and i 3 the current going

The equation for current i 3 is shown below, assuming resistor R3 has valuethrough R3.

R3.

i 3 = V2 - V3 (2.20)
R3

The branch current, i 3, is the only expression involving R3 in the KCL equation written at

node 2. Applying KCL at node 3 with i3 assigned to the current flowing through R3, and

out of node 3, as opposed to out of node 2, yields

11

i3 - V3 -V2 (2.21)
R3

Equations (2.20) and (2.21) are the only two expressions including R3. Equation

(2.20) is part of the KCL at node 2, and (2.21) part of the KCL at node 3. Therefore, R3

affects the KCL equations at nodes 2 and 3 only, as shown by the pattern or stamp in

Figure 2.5.

2

3

v2 v3
1 -1

R3 R3

-I_L_ __!_1
R3 R3

Figure 2.5. Stamp for resistor R3 from Example Circuit 1.

Examining the circuit matrix (Figure 2.4)will show that the rest of row 2 can be

constructed by superposing the stamps for the remaining resistors attached to node 2. The

stamp for R1 looks like Figure 2.5 except the rows involved are 2 and 1, the columns are

V 2 and V 1 and the resistor value is R2. Similarly, resistor R4 has a stamp of the form

shown in Figure 2.5 except that all of the 3's are replaced by 4's. The stamps for R1 and

R4 also affect rows 1 and 4. A general stamp for a resistor of value R is shown in Figure

2.6. In the figure, a and b refer to arbitrary rows which are not necessarily adjacent.

2.3.2. Independent voltage source stamp

The stamp for an independent voltage source is derived in this section. The derived

stamp is valid for dc, ac, and transient analyses. When writing KCL, the variables are

usually the voltages at the nodes used in expressions for the currents at the node of interest,

and equations are written at every node. This approach produces n equations, one at each

of the n nodes, with n unknowns, the n unknown node voltages. In the case of voltage

12

sources,thecurrentthroughthevoltagesourceis notexpressiblein termsof nodevoltages
andinsteadmustbedeclaredasavariable.

Figure 2.6.

a

b

vb

1 -1
m m

R R

-1_!__ 1__!__
R R

I

General stamp for a linear resistor of value R connected
between two nodes a and b.

Examine the voltage source V2 connected between nodes 4 and 5 of the circuit in

Figure 2.3. When writing KCL at node 4, the current through the voltage source is written

as Iv2. This is seen as + 1 at matrix position (4, Iv2) in Figure 2.7. When considered from

node 5, the current is -Iv2. This produces the -1 at matrix position (5, Iv2). The current

through the voltage source contributes an extra variable to the matrix. The system of

equations becomes n equations in n+l unknowns. Equation n+l is obtained by using the

value of the voltage source. The equation is

V 4 - V5 = V2. (2.22)

Equation (2.22) appears as a +1 and a -1 at matrix positions (V2, V4) and (V2, V5),

respectively, and a V2 at matrix position (V2, sources). Therefore, the pattern that voltage

source V2 contributes is shown in Figure 2.7. The general stamp of an independent

voltage source is shown in Figure 2.8. where V corresponds to the value of the voltage

source which is connected between nodes a and b, with a as the positive node.

The circuit matrix of Figure 2.4 can be constructed by combining the stamps of the

various resistors and voltage sources involved. Whenever an element of a stamp occupies

the same position in the matrix as an element of another stamp, they are combined by

3_3

addition. Noticethatfor R2andV1thesectionof thestamprelatingto node0 (row 0 and

column V0) is not presentin thematrix, becauseR2 andV 1areconnectionsto ground.
The voltageat node0 is alreadyknown to bezeroandtherowsandcolumnsassociated
with node0 canbeeliminated.

4

5
O
O

O

V2

V4 V5 • • olv2

o
o

1

-1 I
1

V2

I
d

Figure 2.7. Specific voltage source stamp for V2 of Example Circuit 1.

a

b

Vsource

V V I
a b V

1 -1

-1

V2

Figure 2.8. General stamp for a voltage source connected between nodes
a and b, with a as the positive node.

The basic algorithm employing stamps for filling a matrix is shown as a flow chart

in Figure 2.9. A problem may seem to exist with respect to the stamp approach since the

matrix size is not known a-priori. The capability in particular programming languages to

dynamically allocate memory allows the matrix to start out with a size of zero and grow

3.4

dynamicallyin cell sizeor haveexistingentriesappendedwith the insertionof eachdevice

stamp. Beforeenteringthe stampof a deviceinto thecircuit matrix the row andcolumn
entriesthatthedevicewill affectarecheckedfor previousallocation. If spacein thematrix

hasalreadybeenallocatedfor anentry,thenthestampinformationis addedto theentry. If

spacehasnot beenallocatedin the matrix, thenspaceis allocatedfor the entry andthe

stampinformationis usedto fill theentry.

Get Device
from List

End YES
_f
List?

Look Up
Device Stamp

Return to Caller

Insert Into
Matrix

Figure 2.9. Flow chart for device by device matrix fill algorithm.

15

2.4. Matrix Solution Techniques and Sparsity

Many techniques, both direct and iterative, are available for solving matrices.

Whether a specific circuit matrix is solved just once, the direct technique, or is solved

multiple times until the solution is deemed valid, the iterative technique, depends on the

type of analysis desired. Direct techniques are used for operating point analysis or dc

analysis. Iterative techniques are used for nonlinear device analysis. In transient analysis

(see Section 2.6) the matrix is solved either directly or iteratively at each time step,

depending on the type of devices in the circuit.

The direct matrix solving technique of Gaussian elimination, or a permutation of

Gaussian elimination, such as LU factorization, is often used [14]. The details and

complexity of matrix solving routines vary with the structure of the matrix. The

characteristic of matrix sparsity is discussed in the remainder of this section.

The majority of the entries in the matrix of Figure 2.4 are zeroes. The characteristic

of having many empty or zero entries in a matrix is termed sparsity. Special matrix solving

techniques exist to take advantage of and retain sparsity of a matrix during the solution

process [15].

Rows of a circuit matrix represent nodes at which KCL or device equations are

being written, and each of the columns represent either a node voltage or a branch current

involved. The number of entries per row related to a node is proportional to the number of

branches emanating from the node. For circuits with many elements, where the nodes are

not highly interconnected and the device equations involve few variables, the matrix

representing the circuit will be sparse. Many simulators, including SPICE3E2, have a

sparse matrix package which exploits and perpetuates the sparsity of the matrix.

In contrast to dense matrices, ordinarily stored in two-dimensional arrays, linked

list structures are employed for sparse matrices. There is no need to waste memory on

storing an entry of zero. When referencing the structure, if a list element corresponding to

a particular matrix location does not exist, then the matrix entry is assumed to be zero.

16

2.5. Output of Results

Once the matrix has been solved, the results are available in output data structures.

Routines which interface from the simulator to the output package access the data structure

and present the simulation results to the output package structures.

2.6. Notes on Transient and Nonlinear Analysis

The details of the third step of Figure 2.1, Solve Matrix, vary with different types

of analysis. The general flow chart for a transient analysis is shown in Figures 2.10 and

2.11. At the beginning of transient analysis, the current through inductors and

transmission lines, and the voltage across capacitors and p/n junctions must be known. If

this initial condition or operating point data is not specified by the user, a dc analysis is

performed to obtain the state of the circuit before transient analysis proceeds.

Transient analysis starts at an initial time Time_start and finishes at a time

Timestop. In the figures, Time is the variable keeping track of the simulation time. The

matrix is set up and solved at a finite number of time points in between the start and stop

times, therefore, discretizing the continuum between Time_start and Time_stop.

Consecutive time points at which the solution is calculated are separated by fixed or

variable time steps. In the fixed scheme the time step is set a-priori and does not change.

In the variable method the appropriate step is calculated at the present time point ti to reach

the next time point ti+ 1. The significance of time step size will be discussed later in this

section.

Once Time increases beyond Time_stop the simulation ends. At times less than

Timestop, Increment Time appropriately updates the simulation time by either the fixed or

variable methods, and control is passed to Fill Matrix. The process is repeated until

completion. The first step of Figure 2.11 is Fill Matrix, with the subheading Update

Stamps. The stamps presented in Section 2.3 were uncomplicated, depending only on

known device parameters which remained constant. In contrast, many devices have stamps

which depend on parameters which change from time point to time point and, hence, rec-

17

Time -- Time_start

NO I.C. YES

Given?

Call DC Anal.
for l.C.'s

Get l.C.'s From

Input Data

Store Results

Increment Time

()
Figure 2.10. Flow chart for transient analysis, part I.

18

Fill Matrix

(Update Stamps)

Solve Matrix

Store Results

NO Time > YES

Time_stop

Increment Time
Return to Caller

Figure 2.11. Flow chart for transient analysis, part 17.

3.9

uire updating before eachmatrix fill. For example,a linear capacitorhasa transient
analysisstampwhich requiresinformation aboutthe voltageacrossit at time ti_l for a

matrix fill at time ti. At thefirst iterationof Figure2.11,thestampis constructedfor the

capacitorbasedon theinitial conditionvalues. Oncethematrix is solved,thevoltagesat
thenodesof thecapacitorand,therefore,thevoltageacrossthecapacitorareavailableand

will beusedin computingthecapacitorstampatthenexttimestep.

Thetransientanalysisformulaefor devicesarea resultof thediscretizationof the

differential equationrepresentingthe voltage/currentrelationship for the device. The

resulting formulaearereferredto aslinearmultistepformulae[17],which havestability

requirements,dictatingthetimestepsize. Therequirementschangewith theactivity of the

circuit. Largertime stepscanbetakenwhenthevoltageor currentarenotchangingrapidly

in thecircuit. Smallerstepsareneededwhenthecircuit is rapidly changing.Variabletime

stepshavetheadvantageof reducingthenumberof matrixevaluationsby utilizing larger

time stepswherepossible.Variabletimesteps,however,aremoredifficult to programand
entail extra overheadin the main code. In contrast,fixed time stepsrequiremuch less

overheadand aresignificantly easierto program,but lead to unnecessaryextra matrix
evaluations.See[6], [7], and[14] - [17] for details.

This sectionhascenteredon lineardeviceswhich requirethematrix to besolved

onceataparticulartime point. If anyof thedevicesarenonlineartheSolveMatrix stepof
Figure2.11is notasimplematrixevaluation,butmultipleevaluations.See[15]for further
discussion.

2O

2.7. Summary

A circuit simulator has four basic operations: obtain the circuit description,

construct the circuit matrix, solve the matrix, and report the results. Operations two and

three may be executed multiple times depending on the type of analysis. Once the circuit

description is defined by the user and stored in linked list data structures by the simulator,

the matrix is constructed. A popular method of matrix construction in circuit simulators is

the stamp method, in which the matrix is filled device by device based on the contributions

each device makes to a circuit matrix. The stamp for a resistor connected between two

nodes a and b is shown in Figure 2.6. Once the matrix is filled, LU factorization can be

used to solve the matrix. Transient analysis occurs over an interval. The matrix is

constructed and solved at a finite number of time points in the interval. Some stamps may

depend on values from a previous time point. This requires updating stamps before filling

a matrix. More information on computer analysis of circuits is found in [14] - [17].

23.

0 DERIVATION OF TRANSMISSION LINE
STAMPS

Two stamps used in transient analysis of a lossless transmission line are examined.

Section 3.1 supplies the background on the number of device nodes vs. stamp size to set

the foundation for comparing the two stamps. Sections 3.2 and 3.3 describe the stamps,

and Section 3.4 compares them.

3.1. Number of Device Nodes and Stamp Size

In this section the relationship between device nodes and stamp size is examined.

Every circuit element has an associated model. Complex devices have models comprised

of the models of simpler devices. All models have external nodes, the nodes the device

shares with the rest of the circuit, and possible internal nodes and branch currents which

only the device uses (if there are no other circuit elements being controlled by the internal

values). Internal nodes and branch currents are a result of the joining of simple models to

construct a more complex model. There is an important difference with respect to stamp

size between external nodes and internal nodes and internal branch currents.

Stamp size depends on both external and internal nodes and internal currents.

Larger stamps result in larger circuit matrices, which take longer to solve, and more

memory to store. It is desirable to make device stamps as small as possible to obtain

smaller circuit matrices resulting in shorter solution times and better memory utilization.

Stamps can be made smaller by eliminating rows and columns. Row and column

elimination translates into eliminating variables (nodes or currents). It is impossible to

eliminate the rows and columns related to the external nodes since this would disconnect a

device from the circuit. The only choice is eliminating internal nodes or currents. This can

sometimes be done by rewriting a device model, and will be demonstrated in Section 3.3.

22

3.1.1. One-port devices

A one-port device (see Figure 3.1) has two nodes that connect it with the outside

circuit. A stamp for such a device will contain at least a row and column for each node.

Therefore, for a one-port device the stamp is at least 2x2. This is the case for the resistor

(see Figure 2.6). The voltage source (see Figure 2.8) required an extra row and column

making the matrix 3x3.

posl i ,.__

i

negl

Figure 3.1. One-port device.

If there are no controlled devices depending on the current through the voltage

source, the third row (Vsource) and column Iv in Figure 2.8 will not be used in the overall

circuit matrix by other devices. The third row and column are necessary to handle the

current through the voltage source only. The first two rows and columns in Figure 2.8,

which relate to the external nodes of the device, are used in the overall circuit matrix by the

other devices. The voltage source will share the external nodes as points of connection in

the circuit (see Figure 2.4). Therefore, a voltage source will share two rows and columns

with other devices, and will add an extra row and column to the circuit matrix for exclusive

use.

In the remainder of this thesis the rows and columns in a stamp representing the

internal nodes and internal currents of a device will be referred to as extra or added on,

because the rows and columns are only used by the device to which they are internal, and

23

increasethestampsizefor thedevicebeyondthesizeindicatedby theexternalnodesof the

device.

3.1.2. Two-port stamps

A diagram representing a two-port is shown in Figure 3.2. A two-port has four

external nodes, and the stamp will be at least 4x4.

Depending on the specific two-port device there may be internal nodes or branch

currents that will increase the stamp size beyond 4x4. Assuming no controlled elements

these internal nodes and currents will not be used by any other device of the overall circuit.

pos 1 i brl i br2 pos2

I " I hI brl i br2

neg 1 neg2

Figure 3.2. Two-port device.

3,2, Voltage Source/Impedance Stamp for the
Lossless Transmission Line

A valid model for a lossless transmission line is shown in Figure 3.3 and Equations

(3.1) and (3.2). In the equations x is the transmission line delay. This is the time for a

signal to travel once from one end of the line to the other. The voltage source/impedance

model is used in the lossless transmission line module that comes with SPICE3E2.. The

nodes in the figure have been named using the node naming convention employed in

SPICE3E2. All subsequent circuit diagrams and stamps presented will utilize this naming

convention [5].

24

intl int2

posl

negl

pos2

neg2

v
2

Figure 3.3. Voltage source/impedance model.

Vsl(t) = 2v2(t- "r)- Vs2(t- r)

Vs2(t) = 2vl(t - Z)- Vsl(t - X)

(3.1)

(3.2)

In Chapter 2 it was pointed out that the matrix in Figure 2.4 can be constructed by

superposing stamps for the resistors and the voltage sources. Similarly, impedance or

admittance stamps and voltage source stamps can be used to construct the stamp of the

model shown in Figure 3.3. The stamp of the Figure 3.3 schematic is shown in Figure

3.4.

Note that neg 1 and neg2 should not be assumed to be grounded. Also, Equations

(3.1) and (3.2) have no bearing on the form of the stamp, only on the values of Vsl and

Vs2 which appear on the right-hand side of the equality. The independent voltage source

equation is

Vintl - Vneg 1 = Vsl (3.3)

This is the same as Equation (2.22) with the nodes and source renamed. Equation (3.3) is

useful when deriving the form of the stamp. Equations (3.1) and (3.2) are useful when

filling the stamp with numerical values.

The row and column naming in Figure 3.4 are consistent with SPICE3E2;

therefore, the row label ibrl still marks a voltage source equation of the form of Equation

25

(3.3). This stampwasformedusingYo; theadmittanceis usedasopposedto 1/Zoaswas

donein Chapter2. Yo is usedsincein the SPICE3E2code that will be discussedin

Chapter4, and Chapters6 through9, the stampsare filled using admittancevalues as

opposedto thereciprocalof theimpedance.

posl

negl

pos2

neg2

intl

int2

ibrl

ibr2

Posl Negl Pos2 Neg2 Intl Int2 Ibrl Ibr2 RHS

Y -Y
O O

Y
O

-Y Y
O O

-y
O

-1 1

-1 1

-1

-y
O

-1

1

Y 1
O

mm m m

m m |

Figure 3.4. Voltage source/impedance stamp for a lossless transmission
line.

The voltage source/impedance stamp is an 8x8 matrix with 18 nonzero entries. The

size and number of nonzero entries are due to the voltage source connected in series with

the impedance. The currents through the voltage source contribute the rows and columns

Ibrl and Ibr2. The series connection contributes the internal nodes Intl and Int2.

Both the internal nodes and the rows and columns associated with ibr can be

eliminated by converting to a current source in parallel with an impedance which is

commonly called the current source/admittance model. This model is the subject of the next

section.

26

3.3. Current Source/Admittance Stamp for a
Transmission Line

Before the stamp for the current source/admittance model is discussed in Section

3.3.2, the stamp for a current source is derived in Section 3.3.1.

3.3.1. Independent current source stamp

In Figure 3.5, iin and iou t represent the current from outside the source coming into

the top node and going out of the bottom node. The currents iin and iout are due to the rest

of the circuit, and are not being contributed by the current source isl. The current isl

feeding into the top node and out of the bottom node is the contribution from the current

source. The position of isl in the nodal equations for the top and bottom nodes determines

the stamp for the independent current source.

iin posl

negl

isl

Figure 3.5. Current source diagram used in stamp derivation.

KCL at the top node yields

-iin - isl = 0.

Transferring isl ' since it is known, to the right-hand side yields

-iin = isl.

Similarly, KCL at the bottom node results in

(3.4)

(3.5)

27

iin + isl = 0 (3.6)

or

iin = -isl. (3.7)

Therefore, the stamp for an independent current source of value I connected between nodes

a and b and sending current into node a is as shown in Figure 3.6• The circuit matrix will

consist of a certain number of rows and columns and has a right-hand side vector. It can

be seen from the current source stamp that the current source does not create any new rows

or columns in the circuit matrix. The value of the current source is added appropriately to

the right-hand side vector. A current source does not add any new rows or columns, but

fills an entry in an already existing right-hand side vector.

posl

negl

Posl Negl RHS

mum m mm m m •

F'"
Fis1 lsl

-i sl -i sl

m im m m

Co)

Figure 3.6. (a) Stamp for an independent current source. (b)
Conventional representation of independent current source

stamp.

3.3.2. Lossless transmission line stamp

The current source/admittance model for a lossless transmission line is given in

Figure 3.7 and Equations (3.8) through (3.9), where Yo is the characteristic admittance, x

28

is the delay of the line, and isl and is2 are the currents from the source on the left and right

respectively. These can be derived from the voltage source/impedance model by finding

the Norton equivalent circuit.

posl

negl

I I

Figure

I ii

pos2

l'
neg2

I I

3.7. Current source/admittance model.

isl(t) = 2Yov2 (t - 1:) - is2(t - _)

is2(t) = 2YoVl(t - _') - isl(t - r)

(3.8)

(3.9)

The stamp for the model in Figure 3.7 is shown in Figure 3.8. This stamp was

derived by using the current source stamp and the impedance stamp. Notice that only rows

and columns associated with the external nodes remain. The current source/admittance

stamp requires a Yo, isl, and is2. Yo is the characteristic admittance of the line and remains

constant through the transient analysis. The two currents isl and is2 are computed as given

in Equations (3.8) and (3.9). The equations indicate that the currents isl and is2 require

port voltage and source current from one line delay prior to the present time. The details of

storing values at the present time to be referred to one line delay later are found in

Chapter 6.

29

posl

negl

pos2

neg2

Negl Pos2 Neg2 RHSPosl

" 71 sl "Yo -\

-Yo Yo -1 sl

Y -Yo i s2

-\ Yo

Figure 3.8. Current source/admittance stamp for a lossless transmission
line.

3.3.3. Transient analysis of a iossy transmission line

The lossy transmission line model is very similar to the lossless model. The

following discussion will mention only the current source/admittance stamp, but also

applies in analogous fashion to the voltage source/impedance model. The stamp for the

lossy model is as shown in Figure 3.8, but the expressions for isl and is2 are not as given

in Equations (3.8) and (3.9).

In this work, once the framework for a lossy line was established by implementing

a current source/admittance model for the lossless line, the values for isl, and is2 were

supplied by a subroutine developed by D. Kuznetsov. See Kuznetsov and Schutt-Aine for

details on models of lossy and lossless single- and multi-conductor lines [4].

3.4. Stamp Comparison

The voltage source/impedance stamp is shown in Figure 3.4 and the current source

is shown in Figure 3.8. Notice that the current source/admittance stamp is 4x4, four times

smaller than the voltage source/impedance stamp. The overall circuit matrix will be smaller

when using the current source/admittance stamp and, therefore, will take less time to solve.

3O

In addition to matrix size,thecurrentsource/admittancematrix hasonly 12non-

zeroelementsasopposedto the 18of thevoltagesource/impedancestamp. With fewer

nonzeroelements,thecurrentsource/admittancestampwill havefewermemoryreferences
whenbeingloadedinto theoverallcircuitmatrixand,therefore,will beloadedfaster.

3.5. Summary

A device stamp will be at least n x n, not including the right-hand side vector,

where n is the number of nodes. Extra nodes can sometimes be eliminated by rewriting the

equations representing the device. The voltage source/impedance stamp for transient

analysis of the transmission line is larger and has more nonzero entries than for the current

source/admittance stamp. Transient analysis for a lossy transmission line and lossless line

differ only in the expressions for the independent sources.

33_

4. OVERVIEW OF ASPECTS OF SPICE3E2
RELEVANT TO DEVICE INSTALLATION

The purpose of this chapter is to supply the necessary background information on

SPICE3E2 requires in device installation. All of the details of SPICE3E2 code operation

are not presented. Complementary information is found in [6] and [7].

4.1. Organization and Conventions in SPICE3E2
Relevant to Device Installation

This section examines the programming conversions used in SPICE3E2, the

organization of data structures, and defines terms used in the SPICE3E2 documentation,

such as device, model, and instance.

4.1.1. Packages

The SPICE3E2 distribution consists of several different directories containing

different portions of the code. For example, a directory exists containing all of the overall

simulator routines, another containing only sparse matrix routines, another containing

parsing routines (routines which interpret SPICE3E2 input files and commands), and

further directories containing other functions specific to a particular simulator operation (see

Section 4.2.). A group of related routines in SPICE3E2 is referred to as a package. The

routines occupy a single directory dedicated to the package.

The routines of a package are organized into separate files. The contents of the

directories are files containing functions. Usually, but not always, there is an organization

of one function to a file. An important point is placing functions in

32

separatefiles, and grouping like function files into distinct directories only lends

organizationto acode,anddoesnotprovidea methodto attainfunctionhiding [18]. All
functionscanstill call all otherfunctions.

4.1.2. Interpackage communication

The code for SPICE3E2 possesses pseudo-function hiding attained via a

convention restricting the manner in which functions from a particular package are called

[18]. Calls from a function to functions within the same package are unrestricted;

however, outer package functions must be called by using function pointers in an interface

data structure. This restriction is up to the programmers to comply with. If calls between

packages directly call a function as opposed to using the pointers in the interface, the

compiler will not flag this as an error.

In the convention there are no restrictions placed on calls made within the package.

These calls may be done by name or any other manner chosen by the programmer. Calls to

functions in a particular package from outside the package, however, are done by accessing

a data structure containing function pointers to package functions. Inclusion or exclusion

of a function from the data structure will determine whether or not the function is callable

from outside the package and, therefore, whether or not the function is private.

As an example, consider two packages A and B. As shown in Figure 4.1, A

consists of several functions, and B is shown to consist of four functions. Bcreate, Bload,

and Bdestroy are all pointed to by the interface data structure for package B; therefore, any

function in package A with pointer to the interface data structure for package B can access

the three functions, but can not access the function Binterpolate. Once again, this is only

because the programmer adopts the approach of making all outer package calls via an

interface structure. If a direct call by function name to Binterpolate existed in package A,

there is nothing to stop a call with the proper syntax from executing.

33

Figure 4.1. Interpackage function calls in SPICE3E2 are performed by
accessing a data structure with pointers to the other functions

of the other package.

The interpackage communication in SPICE3E2 works in the above described

manner, and is an example of object orientation in ordinary C. Using the inter-package

communication convention requires knowledge of the predesigned interface structure.

When a new function has been introduced in a package and should be visible to the

functions in other packages, the appropriate interfaces have to be modified.

A tempting short cut is to avoid the extra overhead of dealing with outer package

function calls through function pointers in a data structure, but this is necessary when

maintaining a code as large as SPICE3E2. Organizing a code in some object oriented

manner increases the size limit of manageable code [18].

4.1.3. Package function naming conventions

All functions comprising SPICE3E2 (except main) belong to a package. The

naming convention for a function is PACKAGE_NAMEfunctionName, where

34

PACKAGE_NAME is in all caps and has the same name as the directory containing the

package. The first word in the function name is all lower case with all following words

having only the first letter of the word capitalized. The naming of variables in data

structures follows a similar convention of DATA_STRUCTURE NAMEvariableName.

DATASTRUCTURE_NAME is the name of the structure and if associated with a

particular package has the name of the package. The conventions on lower case and

uppercase for the variable name are the same as those for a function name.

4.1.4. Devices, models, and instances

Devices in SPICE3E2 have models and instances associated with them. A device is

a circuit element category such as capacitor, BJT, or resistor. A BJT device will be used as

an example. A circuit may contain 2 pnp and 3 npn BJTs for a total of 5 BJTs. The type

of BJT is taken into account by models. A BJT has two models associated with it, a pnp

and an npn. Consider a circuit in which there are no pnp BJTs and three npn BJTs. This

circuit will result in zero instances of the pnp model and three instances of the npn model of

the BJT device. Model data separate a pnp from an npn. Instance data identify particular

pnps and npns.

The data structure used in SPICE3E2 to hold the information for a particular device

is a linked list of model data structures with each" list element containing model specific

data, therefore, separating an npn from a pnp model, and a pointer to a linked list of

instance data structures of the particular model. The data structure containing information

on the BJTs in the example (zero pnps and three npns) is shown in Figure 4.2.

Even for devices with only one type of model, a model/instance organization exists

to ensure future expansion to multiple models. A resistor has only one model. The resistor

device data structure for a circuit containing only one resistor is shown in Figure 4.3.

35

BJT pnp npn
Model Model

==_. npn
Instancel

Instance2

Instance3

m

m

Figure 4.2. BJT device structure.

4.1.5. The CKT data structure

There are several data structures in SPICE3E2. Three of these structures are

encountered in device installation. The interface structure and the device structure have

already been discussed in Sections 4.1.2 and 4.1.4. The final structure to consider is the

CKT structure. This structure is large and is described in more detail in [6]. The CKT

structure is a main data structure of the simulator, and contains information on the

simulator. Simulation time, pointers to the model data structures, and pointers to the circuit

matrix are a few examples of the fields in the CKT data structure. Any functions requiring

information on the circuit are passed the CKT structure. All of the device routines are sent

the CKT structure when called.

36

RES RES
model

0
l

• l

* RES

instancel

l
l

Figure 4.3. Resistor device data structure for a circuit with only one
resistor.

4.1.6. Summary of relevant organizations and conventions

SPICE3E2 is a large code. The functions comprising SPICE3E2 are placed in

files, usually one function per file. These files are organized into directories. Each

directory containing source code of related routines defines a package. The related routines

in a package perform a step in the circuit analysis algorithm. To assist in maintaining a

code the size of SPICE3, a convention enforcing function hiding is used for calling

functions outside of a package. This form of function hiding works only if the convention

is used.

Finally, the information relating to all of the occurrences of a particular device in the

circuit for analysis is a data structure consisting of linked model elements with each model

element having a pointer to the beginning of a list of linked instances elements. A pointer

to the beginning of the linked list of models for each type of device in the circuit is found in

the CKT structure.

37

4.2. SPICE3E2 Directory Structure

The directory map for SPICE3E2 is shown in Figure 4.4.

shown. Notice that there are no more directories below

spice3e2/src/lib/dev.

All directories are

the directories in

1_ I I Iexamples lib man

Jl
| ! !

helpdir scripts manl

spice3e2

I
I

notes

! !

man3 man5

, ! i [._ J [._ Ickt cp dev hip mfb

I ,
I I I I I I

asrc bjt bsiml bsim2 cap cccs

I

mfbpc

sic tmp u

linc'ludeldb nb

I
! | i

misc ni sparse

I l I I I

ccvs csw dio disto ind

e@e

eee
I I I I

isrc jfet ltra mes
I I I I

mosl mos2 mos3 mos6 U sw

oeo
|

Figure

I I I I

urc VCCS VCVS vsrc

i

4.4. Spice directory structure. Boxed directories contain files to
be modified during a device installation.

The makefile for SPICE3E2 resides in spice3e2/util and a configuration file which it

uses is in spice3e2/conf. The configuration file is called defaults, All source code is in

spice3e2/src. The function main (in file main.c), some configuration files, and the

executable are in spice3e2/src/libYoin. All the headers for files in the distribution are in

38

spice3e2/src/include.The directoryspice3e2/src/libcontainsthebulk of thesourcecode

with the overall circuit routine packagein spice3e2/src/lib/ckt,and math routines in

spice3e2/src/lib/cp(complex), ni (numerical integration), and sparse(sparsematrix).

SPICE3E2graphicspackageare found in spice3e2/src/lib/mfb(for workstations)and

mfbpc(for PC's). Thefront-endpackage,or nutmegroutines,arein spice3e2/src/lib/fte,

while the parsing package is in spice3e2/src/lib/inp. The directory hip in the

spice3e2/src/libdirectorycontainshelpfacility routines,andany functionswhich defied

categorization are in spice3e2/src/lib/misc. Finally, the device routines are in

spice3e2/src/lib/dev.Thereis adirectoryfor eachdevicesupportedby SPICE3E2.These

subdirectoriesof spice3e2/src/lib/devcontain routinesfor calculating stamp entries,

insertingstamps,updatingstamps,andotherfunctionsinvolved with the specificdevice
stampandthespecificmodelandinstancedatastructurefor thedevice. Theroutinesin the

devsubdirectoriesarecalledby routinesin thecircuit packagewhenafunction hasto be

performed. For example,at thepoint whenthecircuit matrix is to be filled, a general
function exists in spice3e2/src/lib/ckt which calls routines below in

spice3e2/src/lib/dev/nnnnn,wherennnnnis thedirectoryassociatedwith adevicehavinga

stamploadedinto thecircuitmatrix.

Installing anew devicemeanscreatingfunctionsto handlethe insertionof a new

stamp,routinesto sendinformationto thestampfilling routines,newdatastructuresfor the

stampfilling routines,andinterfacestructuresfor thedevice. All of theroutinesanddata

structuresarenot in the sameplace. Installing adevice is independentof manySPICE
packages, but is more complex than just creating device routines in the

spice3e2/src/lib/dev/newdevice.

The boxed directories in Figure 4.4 indicatedirectoriescontaining files to be

modified in the deviceinstallationprocess.The directoryspice3e2/confcontainsa file

whichhasto bemodifiedsothatnewfileswill becompiled.Thespice3e2/src/bindirectory
containssomeconfigurationfiles to bemodified,spice3e2/src/includecontainstheinterface

datastructuresanddevicedatastructuresalongwith otherimportantstructuredefinitions.

There is an obscure change to make in spice3e2/src/lib/fte. The directory

spice3e2/src/lib/inprequiresmodificationandadditionssothatthe inputfile linefor anew

device can be parsed. Finally, a directory for the new device has to be createdin

spice3e2/src/lib/dev,andfilled with routinesfor thenewdevice(seeChapters5 and6).

39

4,3, Loading a Device Stamp into the Circuit
Matrix in Spice3e2

There is one routine responsible for loading the dc and transient analysis stamps

into the circuit matrix for a particular type of device. The name of the stamp loading

function is XXXload, and is found in file xxxload.c in the spice3e2/src/lib/dev/xxx. As an

example of this naming convention, the dc and transient load function for a BJT is the

BJTload found in spice3e2/src/lib/dev/bjt/bjtload.c.

The load function, when called, will load the device stamp into the circuit matrix for

each instance of each model for the device. In the analysis of a circuit containing 3 pnp and

5 npn BJTs a call to BJTload will insert the stamps for each of the eight BJTs into the

circuit matrix.

The load function for each type of device in the circuit is called when it is time to

load the circuit matrix. In a circuit consisting of a voltage source and resistors, only

RESload and VSRCload are called. The function that calls the DEVload routines is in the

spice3e2/src/lib/ckt directory, and is called CKTload. The function CKTload is called

when it is time to build the circuit matrix. CKTload has access to an array of device

interface structures. There is one element in the array for each type of active device. This

gives CKTload access to the load function, as well as other device specific functions for

each device. If an array element is null, then the circuit does not contain the device

associated with that array element, and the load function for the device will not be called.

4.3.1. Storage of instance specific data

When the load function for a particullar device is called, a pointer to the

corresponding device data is passed to the load function from CKTload. This pointer

contains the beginning address of the model data structure. In this manner, the load

function starts out with the first instance of the first model of the device, performs the

loading and moves on to the next instance of the same model or the next model as

appropriate.

The manner in which a load function traverses the device structure is illustrated in

the code excerpt from the RESload function shown in Figure 4.5. Notice that the pointer to

4O

the resistordevicedatahasbeenpassedin asthepointer to thefirst resistormodeleven

thoughtheCKT structureitself hasalsobeenpassed.Thedevicedatapointer is passed

separatelysinceit is codelessduplicationto haveCKTload,the singlecalling function,

passingthepointer thanit wouldbeto haveeachdevice'sloadfunctionextractthepointer.

The trouble of extracting the resistordevice datapointer hasbeenleft to the calling
function.

In the function shown in Figure 4.5 the register variable model points to the first

(and only) resistor model, and the variable here will point to the instance data being

loaded. The first for loop advances along the linked list of models in the device structure,

and the second for loop sets here to the first instance of the model type and later advances

the here pointer to the next instance of the model until NULL is reached.

Figure 4.6 will be referred to in conjunction with the code in Figure 4.5 in the

following example. Figure 4.6 shows a diagram of the resistor device data for a circuit

containing only two resistors along with code executed when traversing the structure. The

here pointer points to the first instance by accessing the beginning of the instance list from

a pointer in the model structures indicated by the line, here = model->RESinstances. The

inner for loop of Figure 4.5 ends its f'u'st run through and the stamp for instance 1 is loaded

into the circuit matrix. After the first iteration here is advanced from instance 1 to instance

2 by accessing the pointer here->RESnextlnstance_ During the second iteration the stamp

for the second resistor is loaded. Once control returns to the top of the inner for loop here-

>RESnextlnstance is accessed and a NULL is encountered. Next, model->RESnextModel

is accessed and a NULL is hit, and RESload is exited.

43.

/*ARGSUSED*/
int

RESload(inModel,ckt)
GENmodel *inModel;
CKTcircuit *ckt;

/* actually load the current resistance value into the
* sparse matrix previously provided
*/

{
register RESmodel *model = (RESmodel *)inModel;
register RESinstance *here;

/* loop through all the resistor models */
for(; model != NULL; model = model->RESnextModel) {

/* loop through all the instances of the model */
for (here = model->RESinstances; here != NULL ;

here=here->RESnextlnstance) {

FILL STAMP

}
return(OK);

Figure 4.5.

I I

Excerpt from RESload (spice3e2/src/lib/dev/res/resload.c) to
illustrate advancing along the device structure.

4.3.2. Insertion of a device stamp into the circuit matrix

A stamp has a finite number of nonzero entries. These entries contribute to the

overall circuit matrix as indicated in Chapter 2. In the instance structure a pointer exists for

each nonzero stamp entry. The pointers are initialized to point to the specific place in the

circuit matrix where the stamp entry is to go. These fast matrix loading pointers, or fast

matrix pointers, for a resistor are listed below.

42

RESposPosptr

RESnegNegptr

RESposNegptr

RESnegPosptr.

register RESmodel *model
= (RESmodel *)inModel

here = model->RESinstances

here = here->RESnextlnstance

II II I I

RES
model

RE_
instancel

RES
instance2

= model->RESnextModel

here = here->RESnextInstance

here = here->RESnextlnstance

Figure 4.6.

/
m

Assigning of the variables here and model while stepping
through the instance list of two resistors (circuit has two
resistors).

These pointers are initialized to circuit matrix positions in the function RESsetup. This

function is shown in Figure 4.7. Once the fast matrix pointers are initialized they can be

used in the code fragment as shown in Figure 4.8. This fragment shows the conductance

of the resistor being inserted into the circuit matrix via the fast pointers.

43

int
RESsetup(matrix,inModel,ckt,state)

registerSMPmatrix*matrix;
GENmodel*inModel;
CKTcircuit*ckt;
int *state;

/* load the resistor structure with those pointers needed later

* for fast matrix loading
*/

register RESmodel *model = (RESmodel *)inModel;

register RESinstance *here;

/* loop through all the resistor models */
for(; model != NULL; model = model->RESnextModel) {

/* loop through all the instances of the model */

for (here = model->RESinstances; here != NULL ;
here=here->RESnextlnstance) {

/* macro to make elements with built in test for out of memory */

#define TSTALLOC(ptr,first,second) \

if((here->ptr = SMPmakeElt(matrix,here->first,here->second))==
(double *)NULL) {\

return(E_NOMEM);\

TSTALLOC(RESposPosptr, RESposNode, RESposNode);

TSTALLOC(RESnegNegptr, RESnegNode, RESnegNode);

TSTALLOC(RESposNegptr, RESposNode, RESnegNode);

TSTALLOC(RESnegPosptr, RESnegNode, RESposNode);

return(OK);

Figure 4.7. RESsetup excerpt, (spice3e2/src/lib/dev/res/ressetup.c), to
illustrate advancing along the device structure.

44

int

RESload(inModel,ckt)

/* FILL STAMP */

*(here->RESposPosptr) += here->RESconduct;

*(here->RESnegNegptr) +- here->RESconduct;

*(here->RESposNegptr) -= here->RESconduct;

*(here->RESnegPosptr) -= here->RESconduct;

}
return(OK);

Figure 4.8. Excerpt from RESload showing the stamp filling portion.

4.4. Loading of Device Data from the Input File

Section 4.3 examined the stamp loading process. The function CKTload calls the

load functions for the devices comprising the circuit. Each load function loads the circuit

matrix with the stamp for every instance of every model of the device based on parameter

values in the instance structures of the device being loaded.

Some of the data present in the instance structures originally resided in the input file

associated with the circuit being analyzed. The data were copied into the instance structure

for a device from the input file by parsing the input, placing the input in appropriate tables,

and retrieving the input data from the tables when needing to fill the fields of an instance

structure associated with a particular device. This is illustrated in Figure 4.9.

45

Input . _ • • •

File Ao. I -

Figure 4.9. Travels of data from input file to device instance data
structure.

Each device package contains a function called XXXparam where XXX is the

prefix associated with a particular device package. XXXparam loads fields of the instance

data structure for a device with appropriate values from the parameter tables. A data

structure exists for each device which lists the valid parameters for the device. This data

structure is useful when referring to entries in the parameter tables.

4.5. Summary

Files in SPICE3E2 that work together to perform a major simulator function are

organized into packages. Packages communicate through data structures. Each device type

in SPICE3E2 has an associated device data structure consisting of a linked list of model

data structures with each model element having a pointer to the beginning of a linked list of

46

instancedatastructures.Thecircuitmatrix is loadedby traversingthe device data structure

and accessing data for the individual stamps stored in the instance elements. The instance

structure is loaded by device specific routines having access to the tables filled by the

parsing routines.

47

5. DEVICE INSTALLATION STRATEGY

This chapter examines the general strategy for device installation into the SPICE3E2

circuit analysis program. The sections move from a general approach towards a more

specific twelve-step plan.

5.1. General Approach

Each new device requires routines which handle parsing, updating stamp entries,

loading the stamp into the circuit matrix, and other overhead associated with the device

stamp. These functions obtain circuit data by accessing the CKT data structure, and are

called by higher functions through pointers in an interface data structure. This description

leads to a categorization of the device specific routines based upon the work which they

perform. Device specific functions are involved in the performance of calculations and

manipulations to load the unique stamp for the device into the circuit matrix and are also

involved in communication with the rest of SPICE3E2. Therefore, in a broad sense,

installing a new device module into SPICE3E2 entails insuring that the new module can

communicate with the rest of the simulator and that the routines of the new module actually

fill the circuit matrix correctly. This is illustrated in Figure 5.1.

Correct communication is established by reinstalling art already available SPICE3E2

device most similar to the new device. The routines of the old device are renamed. For

example, all resistor functions and data structures may be reproduced under the name

"nres" to supply a module for a negative resistor. No stamp specifics would be changed.

Compiling and testing SPICE3E2 should result in no difference between the old device

(res) and the reinstalled renamed version of the old device (nres). The changes to be made

after the communication step will convert the reinstalled copy into an actual new device.

48

i

i

Device Specific
Operation

Figure 5.1. Two-step approach for device installation into SPICE3E2.

The approach outlined in this section is a safe methodology since the testing of the

second step requires the first step to be complete. The first step should be checked before

commencing with the second. If the first step is not verified, debugging the second step

becomes very difficult. The source of a bug could be an error in the code dealing with

device function behavior or an error in the code dealing with communication, and it is very

difficult to discern which. For this reason, it is better to make changes to the device

routines beyond mere function and data name changes only after the success of the

communication modifications has been determined.

5.2. Specific Strategy

The general two steps of Section 5.1 can be broken down into further steps as

shown in Figure 5.2.

49

Figure 5.2. Steps comprising the communication and device specific
operation steps of the general approach to device installation
in SPICE3E2.

50

As previously mentioned,the first stepin device installation is to copy device

specific code from an alreadyexisting device. The namesof variables,functions,and

headersin the copied files, aswell asthenamesof thefiles themselves,arechangedto
indicateassociationwith thenewdevice. Note,only thenamesandnot thefunctionalityof

theroutineshavebeenchanged.Next, thefiles anddatastructuresresponsiblefor inter-

packagecommunicationin SPICE3E2areupdatedallowingthesimulatorto accessthenew

routines. Verifying thatthenewdevicebehaveslike theolderdevicefrom whichfileswere

copiedcannotbedonewithoutrecompilingSPICE.TheUNIX makecommandis usedto

compile SPICE3E2. Therearefiles usedby the utility make in various directories, and

these files require modification before a successful compile may occur.

The two steps after verification of communication comprising the device specific

modifications are the changes to be made to the device specific routines to obtain new

device behavior, and confirmation that the new device behavior is achieved.

5.3. Twelve-Step Plan

The twelve-step plan for device installation is shown in list form in Figure 5.3. It is

a further breakdown of the device installation strategy. Details about these steps are

discussed in Chapters 6 through 8 via three examples of device installation.

0

2.

,

.

,

Create a directory for the device specific routines of the new device.

Copy the files associated with the SPICE3E2 device which is most
similar to the device to install.

Change the names of the data structures, functions, headers in the

copied device files.

Change the names of the data structure variables, functions, headers,
and macro definitions in the copied header files.

Change the names of data structures, functions, and headers in copied

parser file.

6. Modify the parser header file.

51

7. Modify the main parsing routine.

8. Modify the simulator files.

9. Modify the files used by make.

10. Check for successful establishment of communication.

1 1. Modify the operation of the device specific code.

12. Check for correct new device operation.

5.4. Summary

The strategy for device installation was viewed at different levels of detail. A

device in SPICE3E2 participates in communication with the rest of the simulator and also

fills the circuit matrix with the device stamp. The overall approach is to reinstall the most

similar existing device under the new device name to establish correct communication

before proceeding to change the operations of the copied device routines to achieve the

desired new device behavior.

52

. INSTALLATION OF A NEGATIVE
RESISTOR

This chapter details the twelve-step plan introduced in Chapter 5 for a negative

resistor. The steps 1 through 10 and step 12 are common to all device installations. This

chapter uses the negative resistor as a simple example of establishing communication

between a device package and the rest of SPICE3E2. The device is described in Sections

6.1 and 6.2. Following the two introductory sections are the details of the installation in

Section 6.3. The source code referred to in this chapter is found in Appendix A.

6.1. Description of the Negative Resistor Stamp

A negative resistor is a one-port device having the IV relationship shown in (6.1).

Current flows from the negative node to the positive node in a negative resistor. Figure 3.1

has been repeated as Figure 6.1 for ease of reference in the following discussion.

v= -Ri (6.1)

posl i -"-

i

neg 1

Figure 6.1. One-port device.

53

The contribution to KCL at the positive node is

R(Vpos- (6.2)Vneg)

The stamp for a negative resistor is as shown in Figure 6.2. It will be shown in

the device installation procedure for the negative resistor that only the device code dealing

with stamp filling has to be modified after communication with SPICE is established.

fl

0

b

Va ooo V b

-1 1

R ooo --fr-
o •
• •
• •

l -1

R ooo R

Figure 6.2. Stamp for a negative resistor.

6.2. Description of the Negative Resistor Input
File Line

The description of a negative resistor device is not complete until the user interface,

or the manner in which a user can include a negative resistor in a circuit analysis, is

described. This means defining an input file line for the negative resistor or, in SPICE

terminology, defining the negative resistor card. The card for a negative resistor has been

chosen to be Nxxxxx nodel node2 value in this example. The xxxxx indicates the usual

SPICE flexibility in naming of a device, node 1 and node2 are the numeric labels of the

positive and negative nodes, respectively, and value is the value in ohms of the negative

resistor. Note that NRES1 5 0 4 represents a negative resistor connected from node 5 to

ground of value 4 f2. The I/V relationship for this particular device is

v = -4i (6.3)

54

6.3. Details of the Twelve-Device Installation

Steps for a Negative Resistor

This section consists of twelve subsections, one for each of the twelve-steps.

6.3.1. Create negative resistor directory

There are over 20 files associated with the negative resistor. Most.of these files

contain device specific functions. The convention in SPICE3E2 is to store flies containing

device specific functions in a subdirectory of spice3e2/src/lib/dev dedicated to the device.

Since the negative resistor was new to SPICE3E2, a directory did not exist for it and had to

be created. The directory that was created is spice3e2/src/lib/dev/nres.

6.3.2. Copy files of ordinary resistor

Files for the ordinary resistor exist in three places, as shown in Figure 6.3,

spice3e2/src/lib/dev/res contains device files, spice3e2/src/include contains header files,

and spice3e2/src/lib/inp contains the parser file.

The device files, found in the dev/res directory, were copied into the nres directory

created in Section 6.1.1. The names of the device files begin with the prefix res except for

the files makedefs, msc51.bat, and response.lib. All of the files copied into dev/nres

beginning with prefix res were renamed to begin with prefix nres. For example, resload.c

was renamed to nresload.c. The files makedefs, msc51 .bat, and response.lib were not and

should not be renamed.

The resistor header files begin with the prefix res, and were copied to similarly

named files with prefix nres within the same directory spice3e2/src/lib/include. The result

was the files nresdefs.h, nresext.h, and nresitf.h.

Finally, there has to be a specific function to parse the input file line of the negative

resistor, and for this purpose inp2r.c was copied to inp2n.c within the directory

spice3e2/src/lib/inp.

55

spice3e2/src/lib/dev/res

makedefs* resdel.c* resmdel.c*

msc51 .bat* resdest.c* resmpar.c*

res.c* resload.c* resnoise.c*

resask.c* resmask.c* resparam.c*

response.lib* ressload.c*

respzld.c* ressprt.c*

ressacl.c* ressset.c*

ressetup.c* restemp.c*

spic¢3e2/src/include

resdefs.h resext.h resitf.h

spice3e2/src/lib/inp

inp2r.c

Figure 6.3. Files associated with the ordinary resistor listed under
location.

6.3.3. Change names in copied device files

The device files copied into spice3e2/src/lib/dev/nres in Section 6.1.2 are

appropriately named to indicate association with the negative resistor, but the contents of

the files are still identical to those of the ordinary resistor. The first step in changing the

contents of these files to obtain negative resistor behavior is to rename the functions,

variables, and data structures found within. This changing of names will create a

distinction between resistor and negative resistor functions, and will avoid function

redeclaration errors and allow the device function code to compile. After renaming,

however, the functions are identical procedure wise, and negative resistor functions will

behave exactly like ordinary resistor functions. Changing the behavior of the device

functions is discussed in Section 6.1.11.

An example of the typical changes to be made are shown in Appendix A under

Section A. 1. A typical device function before modification is shown in Section A. 1.1 with

the code that will be modified shown in boxes. A listing of the function after modification

is supplied in Section A. 1.2. Most of the files in the nres directory require the type of

changes shown in the example of Section A.I.1 and Section A.1.2. The file nres.c is

56

slightly differentandtheplacesrequiringchangesin it areshownin SectionA.1.3. The
renamedversionof nres.cis shownin SectionA.1.4.

The modificationsto the files makedefs,msc51.bat,andresponse.libwill not be

discussedin this subsection,but will bedeferredto 6.1.9. Therenamingof thethreefiles
will bediscussedin Section6.1.9.

6.3.4. Change names in copied header files

There are further name changes of the kind performed in the device functions of

spice3e2/src/lib/dev/nres. The changes are in the copied header files and copied parser file.

The changes made to the copied header files nresdefs.h, nresext.h, and nresitf.h located in

spice3e2/src/include are very similar to those made in Section 6.1.3 and, therefore, will not

be discussed; however, the modified code is shown in Section A.2 in Appendix A. The

following Section 6.3.5 discusses modification to the copied parser file.

6.3.5. Change names in copied parser file

The copied parser file is inp2n.c and resides in the directory spice3e2/src/lib/inp.

The renaming of the function contents is similar to that discussed in the preceding two

sections, but can be a little tricky since in certain places only the letter R(r) is being changed

to N(n) as opposed to the prefix RES being changed to NRES, and not all instances of the

letter R(r) are changed. For this reason the unmodified version of inp2n.c is shown in

Section A.3.1 with the places for modification indicated by the boxes. Section A.3.2

shows the modified version of inp2n.c. Notice that tab->defRmod was changed to tab-

>defNmod, but ptemp.rValue is not changed, because ptemp is a variable of type IFvalue

and rValue is a field in that structure which is to hold a real value. The r in rValue is not

connected with resistance.

6.3.6. Modify parser header file

The header file for the parser, inpdefs.h, is in the spice3e2/src/include directory

with all of the other header files in SPICE3E2. Additions were made to inpdefs.h to

include the new parser function INP2N in the data structures contained in inpdefs.h.

Excerpts from the modified versions of inpdefs.h are shown in Section A.4 with the lines

57

of interestboxedin. In thefirst section,the linedefNmodis alreadyincludedin inpdefs.h;

therefore,thefirst sectiondid notrequiremodification. In thesecondsection,the line void

INP2N(GENERIC*,INPtables*,card*); has been added. In the third section, the line

void INP2N(); has been included.

6.3.7. Modify main parsing routine

Chapter 4 described the parsing of a device card. The function that searched the

input file and called the appropriate device specific parsing function is INPpas2, found in

spice3e2/src/lib/inp/inppas2.c. The calls to the device specific parsing functions are in a

switch statement. Section A.5 shows parts of this switch statement in the excerpts from the

modified version of INPpas2. The code which was added to the function in order to

modify it is boxed. When the first character read from a line is an 'N' or 'n' the boxed

code is executed.

6.3.8. Modify simulator files

The simulator files that were modified are bconf.c, cconf.c, and config.c located in

spice3e2/src/bin and subckt.c located in spice3e2/srdlib/fte. The changes to be made in the

files are very similar to each other. The files bconf.c and cconf.c are very much alike and

require identical changes. Three sections from modified versions of bconf.c are shown in

A.6.1, with the added code boxed in. The file config.c differs from bconf.c in that the first

section of bconf.c shown in A.6.1 is not included in config.c. The two following sections

are included in config.c, however, and require the same changes as in bconf.c and cconf.c.

An excerpt from subckt.c is shown in A.6.2. The line added is case 'n': return

(2); and is shown in the box in the listing for subckt.c. This line specifies the number of

nodes of the device and is the reason for the return (2) in the added line. If the new device

had four nodes, then a 4 would be returned.

6.3.9. Modify files used by make

The changes discussed to this point, if done correctly, will perform ordinary

resistor analysis when the negative resistor is called since the names of and the contents of

copied functions have been changed, but not the workings of the functions. The line

58

NRES2 5 0 7 will result in anordinary resistorfrom nodefive to groundwith avalueof

7f2. Thefunctionscalled to perform the analysis will be those of the negative resistor, but

these will perform exactly as the counterpart ordinary resistor functions. Before testing to

see if this is indeed the result, the code had to be compiled. SPICE3E2 is compiled using

the make utility of UNIX [19]. The make utility uses some flies in various directories;

these files are makedefs, msc51.bat, and response.lib, and the file defaults in the

spice3e2/conf directory. The instances of the files makedefs, msc51.bat, and response.lib

to modify are the copied ones in the new directory spice3e2/src/lib/dev/nres, and those in

the spice3e2/src/lib/inp directory.

The contents of the file makedefs in the nres directory before modification are

shown in Section A.7.1. There are three areas for change. The section CFILES should

contain the names of the nres function files as opposed to the res function files. The

COBJS section should contain nres objects as opposed to res objects. Finally, the

MODULE should be rues.

The contents of msc51.bat of the rues directory are shown in Section A.7.2 and, as

in makedefs, the prefixes should be changed to nres. Care was taken that not all instances

of res in msc51.bat be changed to nres. There is only one instance of res that should not be

changed and it occurs at the bottom of the file in the line lib ..\.Mevl.lib @response.lib.

The changes made in spice3e2/src/lib/dev/nres/response.lib are only prefix changes

from res to rues, similar to msc51.bat. Therefore, this particular response.lib is not

shown, but an excerpt from a response.lib for another directory is shown in Section A.7.4.

The files makedefs, msc51.bat, and response.lib in the spice3e2/src/lib/inp

directory required modification to include inp2n.c in the compilation. This meant adding

inp2n.c to the list of CFILES in makedefs and inp2n.o to the list of COBJS in makedefs.

In msc51.bat the line cl/L.k.kAinclude/c inp2n.c >> ..\A.Amsc.out was added. The

addition to response.lib in the inp directory was +inp2n.obj&. The line +inp2n.obj& was

inserted into the list contained in response.lib as shown in Section A.7.4.

Part of the function of the file defaults is to indicate to the make utility whether or

not to compile the code for a device. Section A.7.3 contains an excerpt from the file

defaults after modification with the addition nres boxed in. This includes the negative

resistor functions into the compilation process.

59

The code was recompiledby typing util/build mips from within the spice3e2

directory under the Ultrix operating system. If SPICE3E2 is installed under a different

operating system, the Spice3e2 Installation Guide can be consulted. The guide is found in

the file spice3e2/readme.

Compilation may be done after appropriate steps in the installation process to check

the changes. In this case, the files used by make should be updated before compilation,

and parts of step 9 should be implemented earlier.

6.3.10. Verify establishment of communication with the main

code

This step was performed by constructing a simple input circuit which included a

negative resistor, performing a SPICE run on it, and checking that the negative resistor

behaved like an ordinary resistor with current flowing through it from positive to negative.

If there are any errors, correcting them and repeating this step will make debugging

the overall installation easier. Once this step is successful, communication has been

established between the new package (nres) and the rest of SPICE3E2. The remaining

steps tailor the operation of nres to that of a negative resistor and verify successful negative

resistor operation.

6.3.11. Modify operation of copied device code

The changes made up to this point were name changes, or the additions of names to

files to facilitate proper compilation or proper communication with the rest of the code. The

next changes converted the nres package from a mere renamed duplicate of the res package

to a unique package to handle the negative resistor. This step is the largest for most other

devices, but in the contrived case of a negative resistor, only one function has to be

changed. The function that was changed is the NRESIoad function, which loads the stamp

into the matrix. The stamp for an ordinary resistor can be converted to that of a negative

resistor and vice-versa by negating the entries of the respective stamp. An unmodified

version of NRESload is listed in Section A.8.1. The boxed code loads the resistor stamp

into the matrix by adding the resistor admittance to the appropriate matrix positions.

60

Negatingtheadmittancewill resultin thenegativeresistorstampbeingloaded,andthenres
packagewill perform analysisfor a negativeresistor. The modified code is listed in
SectionA.8.2

6.3.12. Check new device operation

Verifying installation of the negative resistor was similar to step 10, except this time

it was checked to see if the current ran from negative to positive through the negative

resistor.

6.4. Summary

The installation of a negative resistor was described to illustrate the steps in the

installation of a device into SPICE3E2, particularly the steps involved with establishing

communication between the new package and the rest of the code which are common to all

device installations. The negative resistor is a contrived practice case and was very similar

to an ordinary resistor. The only function to be changed after establishing communication

was the stamp loading function. In the installation of a nonhypothetical device,

modification of copied device code operation will be more substantial as shown in Chapters

7 and 8.

61

7. INSTALLATION OF A LOSSLESS
TRANSMISSION LINE MODEL FOR

TRANSIENT ANALYSIS

A lossless transmission line model already exists in SPICE3E2. The reasons for

installing a new lossless model are primarily a more efficient stamp, and to set the

foundation for a lossy model. As mentioned in Chapter 3, the lossless line model already

in SPICE3E2 uses a voltage source/impedance stamp. This chapter details the installation

of a lossless transmission line model which utilizes the more efficient current

source/admittance stamp. The installation of the lossless model sets the foundation for the

installation of the lossy model of Chapter 8. As with the negative resistor installation

example, the most similar device will be chosen as the foundation device for the lossless

transmission line. The files of the existing lossless line model will be copied to form a

basis for the new model.

The first two sections recap information from Chapter 3 and provide information on

the code used to manipulate a crucial data structure of the line model. Section 7.3 describes

some of the differences in coding between the voltage source/impedance and current

source/admittance models. Section 7.4 summarizes the first ten steps in the device

installation procedure for the lossless model being installed. The fifth section gives details

on step eleven of the installation procedure. This chapter covers the installation of code for

transient analysis of only the lossless line. Stamps for ac or transient analysis will not be

examined. The installation procedure for ac and transient analysis is very similar to the

presentation to follow for the transient analysis case.

7.1. Lossless Transmission Line Models Revisited

Chapter 3 introduced the voltage source/impedance model and current

source/admittance models for transient analysis of a lossless transmission line. In both

models, the impedance element remained a constant equal to the characteristic value for the

62

line. The source terms, however, varied at every time step. The voltage source

expressions(Equations(3.1)and(3.2))areprintedagainas(7.1) and(7.2),andthosefor

thecurrent sourcemodel ((3.8) and(3.9)) areshownas(7.3) and(7.4). In eithermodel

valuesfrom x, or one-line delay, in the past are referenced.

Vsl (t)= 2v2(t- T)- Vs2(t- _') (7.1)

Vs2 (t) = 2Vl(t - z) - Vsl(t - x) (7.2)

isl(t) = 2Yov2 (t - x) - is2(t - x) (7.3)

is2 (t) = 2Yov 2 (t - x) - isl (t - x) (7.4)

7.2. Referencing Previous Values

The lossless model installed in SPICE3E2 is the voltage source/impedance model

and a data structure is used to store values that will be referenced later in the simulation.

This data structure is a simple one-dimensional array called the delay table. A pointer to it

exists in the transmission line instance data structure. The same structure and code

associated with the maintenance of the structure will be used for the current source model to

be installed. The following three subsections describe the delay table. The information

may be useful in future modifications or in understanding how equations of the form of

Equations (7.1) to (7.4) are supported in the transmission line package.

7.2.1. The delay table

The delay table is a one-dimensional array. Space in the delay table is allocated

three elements at a time. The first element holds the time associated with the data to be

stored in the following two array positions. As an example (see Figure 7.1), if the

simulation time is 2.5, then a 2.5 is stored in the first of the three elements. The second of

the three array positions is used to store the information that will be required by the first

source. In the case of the voltage source/impedance model at time 2.5, this means that the

value of 2V2(2.5) - Vs2(2.5) is stored in the second position. The third matrix position

holds the information that will be needed by the second source, with the present simulation

time being 2.5; the value stored is 2V1(2.5) - Vsl(2.5).

63

array •

index •

n

n+l

n+2

2.5

Figure 7.1. Delay table example.

7.2.2. Delay table management

Predicting the number of entries in and, therefore, the size of the delay table is not

possible since SPICE3E2 uses variable time steps. The delay table is allocated with a set

size at first and reallocated as needed. As the simulation proceeds, certain values in the

delay table become too old, the time associated with the data is earlier than the t-x, where t

is the present simulation time (see Figure 7.2). More specifically, two values just before t-

"cwill be used, but any earlier than these two will not be referred to again. The table is

checked after every matrix solving for values which are too old. The entries which are too

old are discarded and the array rearranged. The code concerned with checking and

rearranging the delay table is in spice3e2/src/lib/dev/ntra/ntraacct.c (see Appendix B,

Section B.5.1).

7.2.3. Interpolation

Figure 7.2 also illustrates the fact that with respect to some present time t data from

exactly x in the past may not be available. Since variable time steps are used, a value from

exactly t-z away is usually not available, and second-order interpolation is used to obtain

the value from x away in all cases. The code that performs the interpolation is part of the

64

functionNTRAload foundin spice3e2/src/lib/dev/ntra/ntraload.c(seeSectionB.4.1). The

boxedcodefinds thethreevaluesto usein the interpolation,stoppingwith thefirst value

greaterthan t-l:. Here->NTRAinputl andhere->NTRAinput2(seeSectionB.4.1) areset

equalto the interpolatedvalues.

line delay

000

points used in
interpolation

Figure 7.2. Time line.

7.2.4. Initial conditions and the delay table

A special case has to be instituted for the delay table. The run following the

establishing of initial conditions will try to reference some value from x away. Most often

this will be some negative value from before the simulation started, or when the initial

conditions are assumed to be valid. This situation is handled by loading the initial value of

the sources as the first two sets of entries from the initial condition run. Close examination

of the code above the final boxed section in the listing of B.4.1 will reveal that these three

values of time (the times of the initial two entries and the entry following the initial

condition run) make it possible to handle the situation of a negative value of t-'_ since the

counter i is not incremented if the time associated with the latest entry is greater than t-x.

The loop is exited and values tl through t3 are available with t3 the latest and tl the earliest.

7.3. Voltage Source/Impedance Model vs. Current
Source/Admittance Model

The main difference between the two models is the resulting stamps. The stamps

derived in Chapter 3 for the two models are shown again as Figures 7.3 and 7.4.

posl

negl

pos2

neg2

intl

int2

ibrl

ibr2

iiii

Posl
m

Y
o

Negl Pos2 Neg2 Intl Int2 Ibrl Ibr2

-y
o

Y -Y
o o

-Yo Y 1

-1

-Y Y 1
o o

-1 1

-I I

-1

RHS

Vsl

l m

65

Figure 7.3. Voltage source/impedance stamp.

The stamp for the voltage source/impedance model has four rows and columns

which are not present in the current source/admittance model. The instance data structure

associated with the current source/admittance model will not contain fields for the internal

nodes and device equations of the opposing model. The data structure of the current source

admittance model will also not contain pointers to the sparse matrix incorporating the

internal node and branch equation fields. Section B. 1. ! shows the instance data structure

for the voltage source/impedance model with the fields to be removed or replaced in the

process of converting to the current source/admittance model boxed in. Changing the

device data structure for the lossless transmission line will require changing any functions

which refer to the old removed or changed fields. The only functions that refer to fields

within the instance data structure are the device functions. The other changes to make to

the device functions when converting from the voltage source/impedance model to the

current source/admittance model result from the different source terms (see Equations 7.1 -

7.4).

66

posl

negl

pos2

neg2

Posl Negl
B

Y -Y
O O

-Yo Yo

Pos2

Y -Y
O O

Neg2

-Y Y
0 0

IitlS

-i sl

ls2

Figure 7.4. Current source/impedance stamp.

7.4. Summary of Steps 1 Through 10 of the
Installation

This section summarizes steps 1 through 10 of the device installation for the

lossless transmission line. These steps are very similar to those performed for the negative

resistor of Chapter 6.

Since the lossless model which comes with SPICE3E2 will be kept, a new

installation is performed for the current source admittance model of the lossless line. This

means that existing lossless line code will not be modified, but copied to serve as a

foundation for the new lossless model• In Chapter 8, the files of the current

source/admittance model will be modified to convert to a more general lossy model.

The input file line, which will include the new lossless line in a circuit, is Nxxxx

posnodel negnodel posnode2 negnode2 zO=value <td=value> <f=freq <nl=nrmlen> >

<ic=vl, il, v2, i2>. This is exactly the same as the line for the voltage source/impedance

model, except that an N is used instead of a T [9] This means that the parsing function for

the new line INP2N in file spice3e2/src/lib/inp/inp2n.c will be an exact copy of INP2T in

inp2t.c, except the names in the code will have to be changed. The function INPpas2 must

call INP2N when an N is read. The code in INPpas2 to call INP2N was added during the

negative resistor installation and only the comments have to be changed.

67

An N will incorporatethenewline into acircuit andNTRA will be theprefixof the

functionsanddatastructuresof thenewlosslessmodel. Theprefix for the losslessmodel
already in SPICE3E2is TRA. Since anN is being usedfor the new model the code

associatedwith the negativeresistorwas written over. The negativeresistor was an

examplecaseonly andnot intendedfor use;therefore,theletterN isusedagainfor thenew
losslesstransmissionline.

Thefollowing list briefly describessteps1through10 of thedeviceinstallationfor

thecurrentsource/admittancemodelfor transientanalysisof thelosslesstransmissionline.
All thestepswerecarriedoutaslistedunlessotherwisestated.

°

2.

o

,

5.

6.

.

,

,

Create directory spice3e2/src/lib/dev/ntra.

a. Copy all files in spice3e2/src/lib/dev/tra to the directory
spice3e2/src/lib/dev/ntra and change the names of the files to begin with
ntra as opposed to tra.

b. Copy tradefs.h, traext.h, and traitf.h in the directory spice3e2/src/include
to ntradefs.h, ntraext.h, and ntraitf.h in the same directory.

c. Copy inp2t.c to inp2n.c in the spice3e2/src/lib/inp directory.

Change the names in the copied device files to represent association with the
new model. All instances of TRA (tra) go to NTRA (ntra) and T's to N's.

Change the names in the copied header files.

Change the names in the copied parser file spice3e2/src/lib/inp/inp2n.c.

Modify the parser header file. This step was omitted since the changes to
make are exactly the same as was done for the negative resistor.

Modify the main parsing routine to include a call to INP2N. Only comments
have to be changed since this change was made during the installation of the
negative resistor.

Modify the simulator files bconf.c, cconf.c, config.c, of the spice3e2/src/bin
directory, and subckt.c of the spice3e2/src/lib/fte directory.

a. Modify the files used by make in the spice3e2/src/lib/dev/ntra directory
and the spice3e2/src/lib/inp directory. The changes in the inp directory
were skipped since they were already performed for the negative resistor
installation.

b. Include ntra in the list of device modules to be compiled in the file

spice3e2/conf/defaults. Make sure to remove nres from the compilation
list.

68

10.

c. Compile using make.

Submit a run which includes the new transmission line. Look for results in

agreement with the voltage source/impedance model or with some other

precalculated results.

7.5. Changes Comprising Step 11

This chapter details the eleventh step of the twelve-step installation plan. The list

that follows is a breakdown of the files to modify in the eleventh step. The subsections

will detail each of the steps. The files in the following list are all found in

spice3e2/src/lib/dev/ntra.

1. ntradefs.h

2. ntrasetup.c
3. ntraask.c
4. ntraload.c
5. ntraacct.c
6. ntratrunc.c

7.5.1. Modifications to ntradefs.h

Section 7.3 discussed most of the changes to the device data structure found in

ntradefs.h. The file ntradefs.h also contains the device model data structure which did not

require modification. Section B.I.1. contains the listing for ntradefs.h before

modification. As previously stated, the first two blocks are removed since the new stamp

does not include internal nodes or branch equations. The second, third, and fourth boxed-

in sections are all pointers to the sparse matrix and are changed since the internal nodes and

branch equations have been removed. The boxed-in section under device parameters is

deleted since the contents of it are constants used to refer to the internal node and branch

equation fields which were removed. The modified version of ntradefs.h is listed in

Section B. 1.2. Notice the changes in the pointers to the sparse matrix.

7.5.2. Modification to ntrasetup.c

A listing of NTRAsetup before modification is in Section B.2.1. The code in the

first four boxes is eliminated in the modified version since it references instance data

69

structurefields which havebeendeletedin Section7.5.1. The last threeboxescontain

codewhich initializesthepointersto thesparsematrix. Sincethe sparsematrix pointers

were modified in Section7.5.1, the code in the last threeboxes of the premodified

NTRAsetuplisting will be replacedwith codeto initialize thenewsparsematrixpointers.

The modifiedversionof NTRAsetupis listedin SectionB.2.2. Notice thechangesto the

sparsematrixpointerallocationsection.

7.5.3. Modifications to ntraask.c

Excerpts from the NTRAask function are found in Section B.3. The two boxed

sections contain references to parameters and instance data structure fields which no longer

exist (see Section 7.4.1), and the code within the boxes is deleted.

7.5.4. Modification of ntraload.c

The file spice3e2/srcflib/dev/ntra/ntraload.c contains NTRAIoad, the function which

loads the lossless transmission line stamp for dc and transient analyses. Section B.4.1

shows excerpts from NTRAload before modification.

The first two boxed sections contain code which enters the voltage

source/impedance stamp into the matrix except for the right-hand side vector. The right-

hand side of the stamp contains source values (see Figure 7.4) which have to be calculated.

The code in the first two boxes was replaced by code which enters the current

source/admittance stamp into the matrix.

The next box contains code to be executed during a dc run. The dc analysis stamp

and code will look different for a current source/admittance model. The dc model will not

be discussed since the primary concern is the transient model. The ability to specify initial

conditions of a circuit will be used to avoid doing adc analysis to obtain the operating

point. After the transient analysis code is working correctly, the dc analysis stamp for the

current source/admittance model may be installed using the same techniques being

demonstrated in the examples of transient analysis stamp installation.

70

Thefourth box of codewill only beexecutedif initial conditionsarebeingused.
This codehadto be modified sothat basedon the initial conditionsthe initial valueof

currentsourcescanbesetasopposedto voltagesources.

Thefifth boxcontainscodewhich is onlyexecutedif adc analysiswasdoneto find

the initial conditions. It was not modified since the dc stamp for the current

source/admittancemodelhasto be installed.As long as the transient stamp installation is

tested with initial conditions specified by the user, this code will not be executed. It will be

commented out to prevent accidental execution. The final box contains the loading of the

right-hand side components of the device stamp. This code will be changed.

None of the code discussed so far in this section computes the right-hand side for a

regular transient analysis iteration as opposed to the special case of the very first iteration in

the transient analysis. The reason is that any other runs will use interpolation on values of

the delay table to find the appropriate source value as explained in Section 7.2.3. The

loading of a present value into the delay table for future reference is explained in the next

section. The modified version of NTRAload is shown in Section B.4.2.

7.5.5. Modifications to ntraacct.c

The boxed sections of the NTRAacct listing in Section B.5.1 show the code

involved with loading the delay table. As explained in Section 7.2.1, the values of

Equations (7.1) and (7.2) are stored. This was changed to store the values of Equations

(7.3) and (7.4) The modified code is shown in Section B.5.2.

7.5.6. Modifications to ntratrunc.c

Excerpts from the unmodified version of the function NTRAtrunc are listed in

B.6.1. The purpose of NTRAtrunc is to set break points based on the changing of the

source (see [7]). This is another piece of code which utilizes fields which no longer exist

after the modifications have been made to the instance data structure. In the unmodified

version, the v variables vl, v2, v3... are set equal to the voltage source values of the model

(see B.5.1 also). Notice that in the modified version of NTRAtrunc listed in Section B.6.2

vl, v2, v3,.., now represent the value of a current source as opposed to a voltage source

(see Section B.5.2 also). The variables vl, v2, v3 were not renamed in order to avoid

73.

an extra source of error during the modification of NTRAtrunc, but may be changed if a

more representative name is desired.

7.6. Summary

The lossless transmission line model installed in this chapter has a different stamp,

a current source/admittance stamp, from the standard lossless line model of SPICE3E2.

The lossless model already in SPICE3E2 was not modified to use a different stamp, instead

a lossless line model using the current source/admittance stamp was treated as a new device

and installed using the resident SPICE3E2 lossless model as a basis for the new line

model.

The lossless line model of this chapter will be used as the starting point for the

installation of a lossy line model in the next chapter. The device code for the new lossless

model will be modified to obtain the lossy line performance.

72

8. INSTALLATION OF A LOSSY
TRANSMISSION LINE MODEL FOR

TRANSIENT ANALYSIS

This chapter details the installation of a lossy transmission line. The first step is the

installation of a simpler lossless model. This was shown in Chapter 7. The modifications

to the lossless line code of Chapter 7 which convert the lossless functions into functions

that are a part of the lossy line module are discussed. Most of the changes made are a result

of the argument requirements of a function which will return source values for the current

source/admittance model. After the difference between the lossy and lossless line models is

restated (see also Chapter 3), the function which returns source values is discussed. The

modification process can be split into two parts. Parts one and two are described and code

modification examples associated with each part are discussed. All of the code examples

referred to in this chapter are in Appendix C.

8olo Difference Between the Lossy and Lossless
Line Stamps

The lossy model uses the same current source/admittance model as the lossless

model (see Section 3.3.2). The stamp looks the same as shown in Figure 7.4. The

difference between the two stamps is the setting of the source values in the right-hand side

vector. The lossless model uses Equations (7.3) and (7.4), but the lossy model uses

different expressions. More can be read about the expressions for the sources in the report

by D. Kuznetsov and J. Schutt-Aine [4].

As far as the installation process of the lossy line is concerned, a subroutine written

by Kuznetsov will be used to supply the source values. The function characteristics and

required parameters will be discussed in the following section.

73

8.2. Requirements of the Source Function

The function which returns the value of the current sources for the lossy model is

called G and is located in spice3e2/src/lib/dev/ntra/vdmmodel.c along with some utility

functions. It is a parallel, step invariant difference model.

The function requires several difference parameters to calculate source values.

These parameters are referred to as difference parameters and will vary with line

specifications. Another piece of code supplied by Kuznetsov, called vdmdiff, located in

spice3e2/src/bin, will produce a file of difference parameters associated with a specified

line. Most of the contents of the parameter file are read in to be passed to the function G,

but some are read in and used in calculations elsewhere. See Section C.2 for a listing and

organization of the parameter file. The function declaration of G is shown in Section C. 1,

along with a short explanation of the arguments to be passed to it.

Some additional points about the arguments of G are presented in this paragraph.

The variable xyold is the value of the voltage at port 1 or port 2 depending on whether L= 1

or 2 from the previous time iteration. This value is also the most recently available solution

at the ports. The values of the current source depend on values from one line delay away

as in the lossless model. The values of Equations (8.1) and (8.2) from a line delay before

the present time are set to xw. Equation (8.1) is used when L=I, and 8.2 when L=2. The

value of xw during the previous iteration is xwold. Isp is allocated on the heap and is

passed to the function.

2(v2 (t - z) Yo2 - G2 (t - z)) + Is2 (t - z) (8.1)

2(Vl (t - z) Yol - G1 (t - z)) + Isl (t - z) (8.2)

Since the function G requires difference parameters to be passed to it, the

parameters will be read into the instance data structure and passed as needed. In this

manner the difference parameters for the device are stored where the rest of the device data

are stored, and since G will be called an arbitrary number of times, accessing a data

structure will be more efficient than reading from the parameter file on every call. The new

fields introduced into the instance data structure required that several modifications be made

to the code. The strategy used when making the modifications is described in the following

section.

74

8.3. Modification Strategy

The lossy line is included in a circuit by using the following syntax: Nxxx

posnodel negnodel posnode2 negnode2 filename. This is similar to the manner in which

a lossless line was called, except that all of the parameters following negnode2 have been

substituted by filename, the name of the difference parameters file. The modifications

associated with insertion of the lossy line model, therefore, deal not only with the proper

calling of the function G, but also with the proper passing of the new input file line.

Parsing changes are saved for part two. In part one the parameters are hardwired

into the instance data structure and are used in calling G. Upon successful completion of

part one, the second part is undertaken. Part two involves changing a data structure so that

the new syntax is recognized and writing a function to read the difference parameters into

the instance structure. The list of changes forming part one is at the beginning of Section

8.4 and the list for part two is at the start of Section 8.5.

8.4. Conversion to Lossy Line Model Part I

The following is a list of steps for part one of the modification procedure.

following subsections discuss each of the steps.

1. Insert fields into the instance structure to store the difference parameters.

2. Modify ntraitf.h.

3. Modify ntraparam.c.

4. Modify ntrasetup.c.

5. Modify ntraload.c.

6. Modify ntraacct.c.

7. Modify ntratrunc.c.

The

75

8. Update spice3e2/src/lib/dev/ntra directory and modify files used by make.

9. Verify that the model gives the correct results for the specific line used.

8.4.1. Insert parameter fields into device data structure

Section C.3.1 shows the listing of spice3e2/src/include/ntradefs.h after

modification. The fields in the box are the new fields, one for every parameter in the line

difference parameter file produced by vdmdiff, and a few used in providing storage for the

results of calculations associated with arguments passed to G. The new fields do not have

the prefix NTRA in front of them; this was only to distinguish them from the fields already

present while modification attempts were in progress. The field prefixes have not been

changed at the time of this writing, but will be changed in order to stay consistent with the

naming conventions in SPICE3E2..

8.4.2. Modify ntraitf.h

This header file, found in the same directory as ntradefs.h, requires only a small

change as is indicated by the boxed code in the listing of Section C.3.2. The listing is of

code after modification and the modification is to make sure that the name field indicates

that the device is a lossy as opposed to a lossless transmission line.

8.4.3. Modify ntraparam.c

The listing of C.4 shows a modified version of

spice3e2/src/lib/dev/ntra/ntraparam.c. The changes made to the code of functions

NTRAparam are indicated in the figure by the boxes. The necessity for these changes will

be evident in the next section where the parameter fields added to the device structure will

be set to specific values based on a particular transmission line. The parameters of

impedance and time delay are given in the parameter file. Difference parameter fields were

created to hold these values when read from the parameter file. There is no need to specify

them on the input file line. The code that is commented out will prevent program execution

from stopping because characteristic impedance and line delay were not specified on the

input file line.

"76

8.4.4. Modify ntrasetup.c

The function NTRAsetup in spice3e2/src/lib/dev/ntra/ntrasetup.c is where the

parameter values for a specific transmission line case will be hard wired in. NTRAsetup

was chosen over NTRAparam since all of the parameters can be loaded in one call to the

function. The modification to NTRAsetup is only temporary, and will be undone in part

two, where a function to read in the data and set the value of the fields in the device

structure will be employed. The boxed code in C.5 shows the setting of the various device

parameter fields to the specific values. The parameter values are for a line of length

0.675m, distributed inductance 5.39x10 -7 H/m, distributed capacitance 3.9x10 -11 F/m,

distributed resistance 1.25x102 D/m, skin resistance 0.0 D./(Hz -0.5) , and distributed

conductance of 0.0 S/m.

A listing of the parameter file for the given line is in C.2. The numbers up to the

first line of text are all difference parameters to be loaded into the device structure. The text

after the numbers explains the format of the file and the transmission line for which the

numbers are valid. A short description of each of the parameters is given in the file format

explanation. Notice that Mwf, Mwb, My 1, and My2 all indicate the size of the arrays

required to hold the data for awf and fcwf, awb and fcwb, ay 1 and fcy 1, and ay2 and fcy2,

respectively.

8.4.5. Modify ntraload.c

The function NTRAload in spice3e2/src/lib/dev/ntra/ntraload.c before modification

is listed in C.6. I, and after modification is listed in C.6.2. The boxes of C.6.1 show

places in the code that will be modified.

The first box highlights the variables internal to the function. Some more internal

variables are added for use as temporary variables. When examining the listing in C.6.2

not all of the variables may be used; this is the result of deletions and other modifications

made some time after the insertion of the variables.

The second box is around code associated with loading the left-hand side of the

device stamp. The field NTRAconduct is not used for the lossy line. Examination of the

parameter file listing C.2 will show Ayl and Ay2 to be the characteristic

77

admittanceof the line. Since both values will equal each other only Ay 1 is used, as shown

in Section C.6.2.

The following box is around code which loads the source values for the very first

transient analysis run with the restriction that the initial conditions have been supplied by

the user. A valid expression for the excitation argument required by G, which is equivalent

to the expressions in Equations (8.1) and (8.2), is shown in the boxed code in Section

C.6.1. Therefore, the expressions are left the same except that NTRAconduct is replaced

by Ay2 and Ayl. The expressions are set equal to the temporary variables xwl and xw2.

The variable xwold is set equal to xwl and then G is called for the particular source value.

Variable xwold is set to xw 1, since this is the initial run and all existing conditions are

assumed to have existed without disturbance long before the present iteration. Notice the

arguments passed to G in the call shown in Section C.6.2. The first call has a first

argument of 1 since the value of the first source is being requested. The arguments here-

>ay 1, here->fcy 1, here->awb, and here->fcwb are pointers to the beginning of arrays as

indicated in Section C.2, here->Myl, here->Awb, and here->Mwb are also difference

parameters being passed in the appropriate fields. The value being passed for the present

time step is ckt->CKTtime. This is the value of the simulation time step and since there

have been no previous runs and the simulation starts at time zero, ckt->CKTtime can be

passed as the length of the time step. At the end of the lossy line listing, here->oldtime is

set to the value of ckt->CKTtime, and during the next iteration the time step length can be

set by calculating ckt->CKTtime - here->oldtime. The voltage at port one or the input port

is given by here->NTRAinitVoltl the user-defined initial port voltage. The time step size

from a delay away is also set to ckt->CKTtime. The call to G for the second source is

analogous to the first. Notice that the values of here->xwoldl and here->xwold2 are set

for use in the next run.

The next boxed code in Section C.6.1 deals with all of the runs following the initial

one. The code in the box loads the values of the excitations based on interpolation on

values stored in the delay table. In the lossy case the values of the sources are set by calls

to G. The code up to the boxes does not change since, as will be seen in the listing for

NTRAacct, the delay table will be used to store values of excitations, and the value of

excitation from one line delay away (xwl and xw2) will have to be found using

interpolation just as the values for the sources were being found in the lossless case. The

remainder of the modifications can be followed in Section C.6.2. After xwl is set, Ty is

calculated as mentioned in the previous paragraph. Tw is the time step size previous to the

78

timefrom onedelayawayandthereforeis setto t3 - t2. Thevalueof xyold is obtainedby

consultingthesolutionof thematrix formedduringthepreviousiterationwhich is themost

recentsolutionavailablefor thevoltagesat thepositiveandnegativenodes.Thepointerto

thematrix solutionsisckt->CKTrhsOld,andspecificvaluescanbereferencedby indexing

theaddressspaceit pointsto appropriately.After xyold iscalculated,all of theparameters

requiredby G areavailableandG is calledto returnthevaluefor sourceone. After thecall

to G, thevalue of here>xwoldl is rewrittenby xwl, andxwoldl is now updatedfor the

next run. It is importantto updatexwold1only afterG hasbeencalled;otherwise,xw 1
will beenteredasthevaluefor xwl and xwoldl, and the subroutine will have incorrect

arguments passed to it. The only parameters which have to be calculated for the call

associated with the second source are xw2 and xyold. After the call to G for the second

source, the value of here->xwold2 is updated. Finally, just before entering the newly

calculated values of here->NTRAinpul(2) into the right-hand side of the stamp, the

oldtime field of the instance data structure is updated.

8.4.6. Modify ntraacct.c

The function NTRAacct located in spice3e2/src/lib/dev/ntra/ntraacct.c is where

entries are made into the delay table. The listing of NTRAacct before modification is in

Section C.7.1, with the code which makes entries into the delay table boxed in. The listing

should be modified to enter the present values of xwl and xw2, as given by Equations

(8.1) and (8.2). Once these are entered into the delay table, they can be referred to later in

the interpolation section of NTRAload. The modified code is shown in C.7.2.

8.4.7. Modify ntratrunc.c

Breakpoints are set in NTRAtrunc and since the excitation equations changed to the

form given in (8.1) and (8.2) the expressions in NTRAtrunc, which load the values of

excitation at the present iteration, must be modified accordingly. The code to modify is

shown in the box in the listing of Section C.8.1, and the modified code is listed in Section

C.8.2.

79

8.4.8. Update spice3e2/src/lib/dev/ntra directory, and modify

files used by make

The files to include in the ntra directory are vdmmodel.c, which contains the

difference model function G, and some files containing math support for the routines in

vdmmodel.c, vdmmodel.h, vdmmath.c, and complex.c. The files vdmmodel.h and

vdmmath.c are included at the beginning of vdmmodel.c, and complex.c is included in

vdmmath.c. Therefore, when vdmmodel.c is compiled so are the other files listed in this

section. The file vdmmodel.c is compiled by including it in the listing of source files and

object files in makedefs, msc51.bat, and response.lib.

8.4.9. Verify the model gives the correct results for the

specific line used

This is the final self-explanatory step of part one. Once the above modifications

were made, an input case was run and compared with available data provided on runs of

the same difference model in an environment other than SPICE. The code was debugged

until agreement between the two solutions was reached.

8.5. Conversion to Lossy Line Model Part II

Section 8.4 described modifications to achieve analysis capability for the case of

one specific transmission line. Only one line could be analyzed since the difference

parameters for a particular line were hard coded in NTRAsetup (see 8.4.4). In part two a

function will be written that will read in data from the difference parameter file and set the

appropriate fields in the instance data structure. In addition, an extra input file line

parameter will be added that will allow the specification of the name of the difference

parameters file on the input file line itself.

The steps comprising part two are the following:

.

2.

3.

4.

Write the function fileread.

Modify ntra.c to include a new parameter.

Modify NTRAparam to call fileread.

Modify ntradefs.h.

80

5. Verify thechangesworked.

8.5.1. Write the function fileread

A listing of the function fileread contained in spice3e2/src/lib/dev/ntra/fileread.c is

in Section C.9. The code is self-explanatory, comprised mainly of memory allocation for

the arrays and fscanf functions to read in the data. Later the code can be improved by

having the fileread function return a flag to indicate success or failure and then letting

SPICE3E2 handle the exiting from program execution as opposed to exiting in fileread

itself.

8.5.2. Modify ntra.c to include a new parameter

The way a new parameter for a device is allowed on the input file line is to include

the name of the parameter in the interface parameter, or IFparm, table contained in

spice3e2/src/lib/dev/ntra/ntra.c. There are no changes required on the parser end of the

code. The reason for this is that when the parser reads in a parameter on the input file line

the IFparm table is searched and the parameter value set. Therefore, when filename =

a.spr is read, a.spr is stored as the value of filename. The listing in C. 10 shows a modified

ntra.c with the modification made boxed in.

8.5.3. Modify NTRAparam to call fileread

The modified version of NTRAparam with the call to fileread shown is listed in

C. 11. When NTRAparam is called with NTRA_PARAM_FILE_NAME, the appropriate

code is executed in the switch statement, and the value of the filename is retrieved and set

equal to the filename field of the device instance structure. The addition of a filename field

is one of two changes that will be discussed in the following section. The code on

NTRAsetup, entered in Section 8.4.4 was removed at this stage.

8.5.4. Modify ntradefs.h

Two changes were made inside ntradefs.h. The first was the addition of a field to

hold the name of the difference parameter file. The chosen field name sticks to the

81

SPICE3E2namingconvention. The nameof the field is NTRAfileName. The second

modificationis to assignanumericalvalueto theconstantNTRA_PARAM_FILE_NAME.

This allows proper functioning of the case statement in NTRAparam and of the IFparm

table.

8.5.5. Verify the changes worked

The verification of part one assures the calculation portion of the lossy line model.

Part two was verified by using the syntax for the new lossy line in the input file and

confirming that the instance structure was loaded correctly.

8.6. Transient Analysis Run of the Lossy Line

This section discusses a circuit analysis run incorporating the lossy line model for

which this chapter details the installation process. The steps in formulating and carrying

out the analysis are listed below. As in previous chapters the following subsections

discuss each of the steps.

1. Formulate circuit.

2. Place line specifications in a file.

3. Run vdmdiff to obtain the difference parameters.

4. Write SPICE input file.

5. Perform analysis.

8.6.1. Formulate circuit

A circuit for which a lossy line run was performed is shown in Figure 8.1. This

particular circuit is simple and primarily tests the operation of the lossy line module. The

voltage pulse supplied by the source is shown in Figure 8.2. Notice that the pulse will not

repeat for 100 ns due to the period specified.

82

R1= 50f_
R2= lk.Q

Figure 8.1. Example Circuit 2. Nodes are labeled by encircled numbers.

m

O
>

0

Figure

I I I l I

I I I I I

0 10 20 30

Time (ns)

Rise time = Ins

Fall time =lns

Pulse width = 20ns
Period = lOOns

Delay = 5ns

Peak voltage = 4V

IIn I 1 ,
40 50

1

8.2. Voltage signal generated at source of Example Circuit 2.

8.6.2. Place line specifications in a file

The program vdmdiff supplies the file of difference parameters for transient

analysis. Before vdmdiff can supply difference parameters for a transmission line, it

requires information about the transmission line. There are two ways to supply the

information. In the first method, line specifications are listed in a particular file which

vdmdiff will read. In the second method, vdmdiff is supplied the name of a new file.

83

When a presentlynonexistentfilename is supplied,vdmdiff will poll the user for the

requiredvaluesandwill savetheline specificationsto thegivennewfilename. Oncethe

line specificationsaregiven,vdmdiff storesthedifferenceparametersin thefile a,spr. The

contentsof a line specificationfile of thetitle line1.lin is shownin Figure8.3.

linel.lin outputfile
6.7500000e-01m, line length
5.390(OK_e-07H/m, distributedinductance
3.900(K10_-11F/m, distributedcapacitance
1.25_+02 Ohm/m, distributedresistance
0.0000000e+00Ohm/(Hz)^l/2, skin resistance
O.O0(O)O)Oe+O0S/m, distributed conductance

7 order of the approximation

Figure 8.3. Transmission line specifications file, line 1.1in.

8.6.3. Run vdmdiff

The screen output from a run of vdmdiff is shown in Figure 8.4. Notice that the

input file is that given in Section 8.6.2 and the output file name is a.spr.

Enter line parameters file name <a.lin>: output file
6.7500000e-01 m, line length
5.3900000e-07 H/m, distributed inductance

3.9000000e-11 F/m, distributed capacitance
1.2500000e+02 Ohm/m, distributed resistance

0.0000000e+00 Ohm/(Hz) ^1/2, skin resistance

0.0000000e+00 S/m, distributed conductance

7 order of the approximation

Do you want to change anything (y/n) ? <n>

Approximating propagation function...

Approximating characteristic admittance...

Job completed. Results saved into file: n

Figure 8.4. Screen dump of a vdmdiff run.

84

8.6.4. Write SPICE input file

The circuit was defined in Section 8.6.1 and the difference parameter file name was

given in Section 8.6.3. With this information known, a SPICE input file can be

constructed. The input file, linel_test.in, constructed for the circuit of this section is

shown in Figure 8.5. Notice that the lossy transmission line syntax contains only the

difference parameter filename and the specification of the initial conditions after the node

specification.

tx-line transient analysis test circ

vl 1 0 pulse(0 4 5ns Ins lns 20ns lOOns)
rl 12 50

r2 3 0 lk

nl 2 0 3 0 filename=a.spr ic=0, 0, 0, 0
.tran 0. Ins 50ns 0.0 0.5ns uic

.end

Figure 8.5. SPICE input file, found in spice3e2/src/bin/linel_test.in, for
transient analysis of Example Circuit 2.

8.6.5. Perform analysis

Analyzing the circuit is as simple as typing spice3 linel_test.in from within the

spice3e2/src/bin directory, and typing run at the SPICE prompt. If terminal specifications

have been correctly set, SPICE3E2 is capable of displaying the simulation results

graphically [10]. The simulation results can also be dumped to a file and displayed using

any of the various plotting packages. The voltages at nodes 2 and 3 of the circuit, or the

voltages at the input and output ports of the transmission line, are shown in Figures 8.6

and 8.7.

85

O

>

Voltage at input port to lossy transmission line vs. time

4,/==:==._:i2212/i........................
;
i'

/

3 _/"/'_/

t

2 ...i.......................i........................

i i !

I
1 I i
x ' i : :

0 i

-1 :::: !:::: ::::I::::I::::

0 2.000 10 s 4.000 10 s

Time (s)

Figure 8.6. Voltage vs. time at input port of lossy transmission line of
Example Circuit 2.

8.7. Summary

The installation of a lossy line model to perform transient analysis was detailed in

this chapter. The differences between lossy and lossless lines were described as the

difference in expressions for the source values appearing on the right-hand side of the

stamp. The function which evaluates the source expressions for the lossy model installed

in this chapter is called G. It is located in spice3e2/src/lib/dev/ntra/vdmmodel.c. The

function G is a parallel, step invariant difference model, and requires several difference

parameters. These parameters can be computed for a particular transmission line using

vdmdiff found in spice3e2/src/bin. The difference parameters file is read and the values of

the parameters are stored in the device specific instance data structure for use in future calls

to G. The changes required by incorporating the difference model into the existing lossless

line module (the lossless module installed in Chapter 7) can be separated into two parts.

The first part deals with calling the function G correctly and incorporating the new

86

parameters associated with G into the device functions. This is done by hardwiring the

difference parameters for one line into the instance structure and making the appropriate

changes to device functions. After successful completion of part one, part two is

performed, dealing with parsing the new lossy line input file syntax and reading the

difference parameters into the instance structure.

Voltage at output port of Iossy transmission line vs. time
5 .. _..........................

A
q" i L/I"" _.... _ :

i.J

J'..I_.........................i

I
.......... ! ;

i

1!.-._..il...

/
/

"-v" [

• • • • • • • |

0 2.000 10 -8 4.000 10 -8

Time (s)

Figure 8.7. Voltage vs. time at output port of lossy transmission line of
Example Circuit 2.

87

9. CONCLUSIONS

The previous chapters stepped through the process of installation into SPICE3E2

for a negative resistor, lossless transmission line transient analysis model and a lossy

transmission line transient analysis model. After performing device installations, some

further modifications to the code came to mind which would increase the manageability of

and therefore extend the life of the source code. The device package changes may be

performed on other device packages and not only on the new lossy line package, ntra,

which is used as the example package. Before detailing the modifications to increase the

manageability of the code, other modification suggestions will be discussed.

9.1. Direct Current and Alternating Current
Analysis

There are two more changes to make to the functions in the new lossy line module,

ntra, to complete the installation process. The changes involve inserting code to handle the

loading of the stamps for dc operating point analysis and ac analysis.

9.1.1. dc analysis

The place to insert the dc stamp is in the NTRAload function, and the precise

location in the function is indicated by the third box in the listing of Section B.4.1. The

fifth box of the same listing contains code associated with dc analysis, in that it is executed

during the very first run of the transient analysis if the initial conditions were obtained by

dc operating point analysis. The listing in Section C.6.2 will show that the two sections

associated with dc analysis are commented out in the code for the NTRAload function. The

steps remaining are to formulate a dc analysis stamp for the lossy transmission line and to

insert it into the position for the dc stamp in NTRAIoad and uncomment and modify the

code which is in the fifth box of Section B.4.1.

88

9.1.2. ac analysis

The function to load the matrix for ac analysis of the lossy transmission line is

located in the file spice3e2/src/lib/dev/ntra/ntraacld.c. This file contains the function

NTRAacLoad, but the function itself is empty. There is nothing between the opening and

closing braces. This is where code is to be written to load the ac stamp into the circuit

matrix. The NTRAload function can be used as an example.

9.2. Modifications to Increase Manageability

The major modules of SPICE3E2, such as the parser module and device modules,

have good interfacing through which to communicate. An example of this is the relative

ease with which a new input line parameter was added in Chapter 8. One of the difficulties

in device installation is that interfacing and modularity do not extend into the device

packages. In contrast, the input parser package has simpler and more modular functions,

and therefore is better organized and easier to read and modify. Another difficulty is that

the programmer involved with modifying the code has to be concerned with directly

accessing storage data structures. This can be awkward when the storage structure is not

straightforward. For example, a programmer interested in modifying the transmission line

code has to know how the delay table functions in order to store and retrieve from it.

Using the delay table requires use of awkward expressions such as *(here->NTRAdelays

+ (3"(i-2))+1), as in the interpolation section of NTRAload (a complete and up-to-date

listing is found in Section D. 1). There is no existing function which will simply enter a

value in to the delay table at the next entry or which will retrieve a value from the delay

table. Another point to consider is that all of the functions in the device package should

communicate through the device data structure. This means rewriting the function G so

that it extracts the difference parameters directly from the device data structure as opposed

to having them passed in the function call.

The modifications will, in summary, make the code more modular, standardize the

interface among the routines, and make the code more object oriented by treating data as an

entity which can be stored to and retrieved from without consideration of the structure of

89

the storage data structure. As an example, the function NTRAIoad will be rewritten using

the above modifications.

9.2.1. Modularizing NTRAload

A complete listing of NTRAload is found in Section D.1. The listing is roughly

4 1/3 pages long. The function can be viewed to consist of a few major sections. The first

deals with loading the general stamp for transient analysis into the matrix. Second, the dc

stamp is loaded if adc analysis is to be performed. Third, if this is the first iteration of the

transient analysis, the values of the sources are calculated from the given initial conditions.

Fourth, if this is the first iteration of the transient analysis and initial conditions were not

given, the values of the sources are calculated from the results of the dc operating point

analysis, again only if the present iteration is the first. Fifth, if the iteration is not the first,

the source values are calculated based on interpolation of entries of the delay table. Finally,

sixth, the source values are loaded into the right-hand side of the circuit matrix. The

rewritten version of NTRAload with a new function added for each major section is listed

in Section D.2.2. The modified function listing is only 1 1/2 pages, and a fair amount of

this is commenting.

The functions comprising NTRAload are NTRAloadLHS, NTRAdcLoad,

NTRAloadUIC, NTRAloadUdc, NTRAinitDelTab, NTRAcalcRHS, NTRAIoadRHS, and

ckt->CKTgetMode. The following subsections describe the functions. Since the purpose

of this chapter is to describe the types of changes to be made and not to list all of the

changes to arrive at a more organized package, only one of the functions is explored in

depth. This function is NTRAcalcRHS, and the functions comprising it will be described

along with functions even farther down the hierarchy. There are two subsections following

the section on NTRAcalcRHS which are not directly about the other functions comprising

NTRAload.

9.2.2. NTRAloadLHS

This function performs performs matrix loading using the fast matrix pointers in the

device structure, such as the code under the comment MOST OF THE STAMP FILLED

HERE, in D.I.1. Creating and using this function help to organize the NTRAload

function.

9O

9.2.3. NTRAdcLoad

This function uses the fast matrix pointers associated with the stamp of dc analysis

to load the dc stamp into the circuit matrix. The code that it replaces is under the comment

STAMP FILL FOR DC ANALYSIS.

9.2.4. NTRAIoadUIC

NTRAIaodUIC loads the circuit matrix with the user-defined initial conditions and

will look like the corresponding piece of code in NTRAload, found in Section D. 1 under

the comment, USE THE INITIAL CONDITIONS SUPPLIED INSTEAD OF THE DC

ANALYSIS VALUES. The new code would be similar except that the call to G will be

much cleaner since G would be rewritten to extract the difference parameters from the

device data structure.

9.2.5. NTRAloadUdc

The function NTRAloadUdc is similar to the loadUIC function except that the

results from the initial transient run should be used. This code would again be much like

the corresponding version in NTRAload. The code in the NTRAIoad listing under USE

THE DC VALUES AS START has not been modified for the lossy transmission line;

therefore, the lines in the listing would not be the code to appear in loadUdc. Even if the

code in the listing of NTRAIoad were updated, the code in loadUdc would not appear the

same since the values from a previous solution will be extracted in a different fashion as

will be pointed out in Section 9.2.9.

9.2.6. NTRAinitDeiTab

NTRAinitDelTab stands for initialize the delay table. As will be seen in following

functions, specific functions will exist to interface to the delay table and so the code making

entries into the delay table will look different than the listing right below SET UP DELAY

TABLE in D. 1. The first two sets of entries will, however, be initialized in the same

manner.

91

9.2.7. NTRAcalcRHS

This function which is listed in C.3 obtains the interpolated values of excitation

from the delay table, calls G, and does the necessary bookkeeping for the next set of calls

to G (which is the next time that NTRAcalcRHS is called). The fields NTRAxyold,

NTRAxw 1, and NTRAxw2 have been added to the device data structure in order to call G

with the instance structure as an interface. The function NTRAgetInterpExcitl returns a

value as opposed to setting NTRAxwI(2) inside itself. This is purely a matter of taste; the

interfacing for this function was chosen as such because it is more natural to have a get

function return a value. NTRAgetInterpExcit is the subject of the next subsection.

9.2.8. NTRAgetInterpExcitl

This function, like the counterpart function NTRAgetInterpExcit2, obtains an

interpolated value of the excitation function associated with a source (1 or 2). The

second-order interpolation is performed much like it is in the original version of

NTRAIoad, except that the manner in which values are retrieved from the delay table is

different. The function NTRAgetDelTablndGrtr returns the index of the delay table entry,

which is the first value greater than the time argument passed to it in a search from smallest

value to largest value. The contents of NTRAgetDelTablndGrtr is a for loop very much

like that shown below the comment FIND INTERPOLATED VALUES in the listing of

C. 1. NTRAgetDelTablndGrtr is listed in Section C.5.

9.2.9. CKTgetSol

The function CKTgetSol used in NTRAcalcRHS is used to treat the circuit matrix in

the same fashion as the delay table. CKTgetSol uses the index passed to it to retrieve the

correct value from the solution vector. The code for CKTgetSol would be implemented as

return *(ckt->CKTrhsOld + index_passed). This is a one-line function and since ckt-

>CKTgetSol would be called in several device packages, the total function call overhead

associated with CKTgetSol will be high, and may cause significant slowdown of the code.

One way to combat this is to create a macro that returns the solutions of the previous

iteration. It could be called CKT_GET SOL and declared as follows: #define

92

CKT_GET_SOL(a) *(ckt->CKTrhsOld + a). The use of a macro would still allow the

data to appear as an object, the modifications' programmer would not have to deal with

pointers to the circuit matrix, and there would be no function call since the compiler would

expand CKT_GET_SOL before the actual code was compiled.

9.2.10. NTRAIoadRHS

This function loads the values of the sources found by the previous, function into

the right-hand side of the circuit matrix. Once again, a function to insert values into the

matrix is needed. This function could also be written as a macro.

9.2.11. CKTgetMode

This function is used in the modified version of NTRAIoad and returns a flag which

can be used to decide what the circuit analysis mode is.

9.3. Summary

The previous chapters detailed the installation process of three different device

models into SPICE3E2. After the installation of the lossy line, some ideas were formulated

on making the source code more manageable. These ideas of increasing modularity,

increasing object orientation, and standardizing the interface in the code were presented in

this chapter. An example rewrite of the NTRAload function illustrated these concepts.

93

APPENDIX A.
RESISTOR CODE

This appendix contains code and code fragments from unmodified and modified

codes connected with the installation of a negative resistor.

A.1. Device Specific Files

This section contains excerpts from the files nresload.c and nres.c before and after

the name change modifications discussed in Section 6.1.3. The files are in the directory

spice3e2/src/lib/dev/nres.

A.I.1. Contents of nresload.c before renaming

#include "spice.h"
#include <stdio.h>

#include "cktdefs.h"

#include Defs.h"

#include "sperror.h"
#include "suffix.h"

/*ARGSUSED*/

oad(inModel,ckt)

GENmodel *inModel;
CKTcircuit *ckt;

/* actually load the current _ce value into the

* sparse matrix previously provided
*/

I

94

register __odel *model = ([_del *)inModel;
register _5_stance *here;

/* loop through all the [_ltor models */______

for(; model != NULL; model = model->_-'_extModel) {

/* loop through all _ances of the model */
for (here = modeli_stances; here != NULL ;

here=here->_xtlnstance) {

*(here->_osPosptr) += here->_duct;
*(here->l_.2_gNegptr) += here->_duct;

*(here->ll_sNegptr) --- here->_duct;

*(here->_,S_gPosptr) -= here->_duct;
}

}
return(OK);

I

A.1.2. Contents of nresload.c

#include "spice.h"
#include <stdio.h>
#include "cktdefs.h"
#include "nresdefs.h"

#include "sperror.h"
#include "suffix.h"

after renaming

/*ARGSUSED*/
int

NRESload(inModel,ckt)
GENmodel *inModel;
CKTcircuit *ckt;

/* actually load the current nresistance value into the
* sparse matrix previously provided
*/

{
register NRESmodel *model = (NRESmodel *)inModel;
register NRESinstance *here;

/* loop through all the nresistor models */
for(; model != NULL; model = model->NRESnextModel) {

/* loop through all the instances of the model */
for (here = model->NRESinstances; here != NULL ;

here=here->NRESnextlnstance) {

*(here->NRESposPosptr) += here->NRESconduct;
*(here->NRESnegNegptr) += here->NRESconduct;

95

*(here->NRESposNegptr)-= here->NRESconduct;
*(here->NRESnegPosptr)-= here->NRESconduct;

}
}
return(OK);

A.1.3. Contents of nres.c before renaming

#include "spice.h"
#include <stdio.h>

#include [_lefs.h"
#include "-d_defs.h"
#include "ifsim.h"
#include "suffix.h"

IFparm [_Table[=_/* parameters */
lOP("reslstance'__SIST, IF_REAL,"R silence"),

lOP("w", _IDTH, IF_REAL,"Width"),

IOP('T', _r,_ENGTH, IF_REAL,"Length"),

lOP("c", _URRENT,IF_REAL,"Current"),
IOP("p", _WER, IF_REAL,"Power'),
IP("sens_resist", _ESIST_SENS, IF_FLAG,

"flag to request sensitivity WRT _ce"),

OP("sens dc", I_UEST_SENS_DC, IF_REAL, "dc sensitivity "),
OP("sens-real",_UEST_SENS_REAL,IF_REAL,

"dc sensitivity and real part of ac sensitivity"),

OP("sens_imag"[_I_QUEST_SENS_IMAG,IF_REAL,

"dc sensitivi_ji.dl_ imag part of ac sensitivity"), ,,

OP("sens mag" _._[_QUEST_SENS_MAG, IF_REAL,, "ac sensitivity of magnitude),
OP("sens-ph", B_,_QUEST_SENS_PH, IF_REAL, 'ac sens!tivity of phase),
OP("sens-cplx' _],__S_QUEST_SENS_CPLX,IF_COMPLEX, 'ac sensitivity),

IOP("temp", _].____TEMP, IF_REAL,"Instance operating temperature"),
};
IFparm]l_;S_t'Table[] = {/* model parameters */

96

IOP("tcl", !IOP("tc2",
IOP("rsh",
IOP("defw"r
IP("r", IRE

IOP("narrow",

IOPCtnom", _
};

:_S_MOD_TC1, IF REAL,IIFirst order temp. coefficient"),
_.MOD TC2, IFREAL, Second order temp. coefficient"),

_qMOD RSH, IF_REAL,"Sheet resistance"),
F.SI MOD_DEF'WIDTH, IF REAL,"Default device width"),

MOD_R, IF_FLAG,"Device is a _r model"),

_,_MOD_NARROW, IFREAL, _wingofr4_or"),
_OD_TNOM, IF_REAL, Parameter measurement temperature"),

};

int_aSize = NUMELEMS(_es);

in _l]_._TSize = NUMELEMS(IIESoIrable);

int_Size = NU_.=_EMS(_able);

intllLESISize = sizeof(_ESi_ance);
int_Size = sizeof(_del);

A.I.4. Contents of nres.c after renaming

#include "spice.h"
#include <stdio.h>
#include "nresdefs.h"
#include "devdefs.h"
#include "ifsim.h"
#include "suffix.h"

IFparm NRESpTable[] = {/* parameters */
IOP("nresistance", NRES RESIST, IF_REAL,"Nresistance"),
lOP("w", NRES_WIDTH, IF_REAL,"Width"),

IOP('T', NRES LENGTH, IF_REAL,"Length"),
lOP("c", NRES_CURRENT,IF_REAL,"Current"),

IOP("p", NRES_POWER, IF_REAL,"Power"),
IPCsens_resist", NRES_RESIST SENS, IF_FLAG,

"flag to request sensitivity WRT resistance"),
OP("sens_dc", NRES_QUEST_SENS_DC, IFREAL, "dc sensitivity "),
OP("sens_real",NRES_QUEST_SENS_REAL,IF_REAL,

"dc sensitivity and real part of ac sensitivity"),
OP("sens_imag",NRES_QUEST_SENS_IMAG,IF_REAL,

"dc sensitivity and imag part of ac sensitivity"),

9"7

OP("sens_mag", NRES QUEST_SENS_MAG, IF_REAL, "ac sensitivity of

magnitude"),
OP("sens_ph", NRES_QUEST_SENS_PH, IF_REAL, "ac sensitivity of

phase"),
OP(" sens_cplx",NRES_QUEST_SENS_CPLX,IF_COMPLEX, "ac

sensitivity"),
IOP("temp", NRES_TEMP, IF_REAL,"Instance operating temperature"),
I;
IFparm NRESmPTable[] = {/* model parameters */
IOP("tcl", NRES MOD_TC1, IF_REAL,"First order temp. coefficient"),
IOP("tc2", NRES MOD_TC2, IF_REAL,"Second order temp. coefficient"),
IOP("rsh", NRES MOD_RSH, IF REAL,"Sheet resistance"),
lOP("defw", NRES_MOD_DEFWIDTH, IF_REAL,"Default device width"),
IP("r", NRES_MOD R, IF_FLAG,"Device is an nresistor model"),
IOP("narrow", NRES MOD_NARROW, IF_REAL,"Narrowing of nresistor"),
IOP("tnom", NRES_MOD_TNOM, IF_REAL,"Parameter measurement

temperature"),
I;

char *NRESnames[] = {
"N+",
"N-"

};

int
int
int
int
int

NRESnSize = NUMELEMS(NRESnames);

NRESpTSize = NUMELEMS(NRESpTable);
NRESmPTSize = NUMELEMS(NRESmPTable);
NRESiSize = sizeof(NRESinstance);
NRESmSize = sizeof(NRESmodel);

A.2. Device Header Files

The device header files for the negative resistor are nresdefs.h, nresext.h, and

nresitf.h. These are located in the directory spice3e2/src/include. Since all of the code in

Sections A.2.1, A.2.2, and A.2.3 have been renamed, the variables and function

references found within indicate association with the negative resistor.

A.2.1. nresdefs.h after renaming

#ifndef NRES
#define NRES

#include "ifsim.h"
#include "cktdefs.h"

#include "gendefs.h"
#include "complex.h"
#include "noisedef.h"

98

/* definitions used to describe nresistors */

/* information used to describe a single instance */

typedef struct sNRESinstance {
struct sNRESmodel *NRESmodPtr; /* backpointer to model */
struct sNRESinstance *NRESnextlnstance; /* pointer to next instance of

* current model*/

IFuid NRESname; /* pointer to character string naming this instance */

int NRESposNode;/* number of positive node of nresistor */
int NRESnegNode;/* number of negative node of nresistor */

double NREStemp; /* temperature at which this nresistor operates */
double NRESconduct; /* conductance at current analysis temperature */
double NRESresist; /* nresistance at temperature Tnom */
double NRESwidth; /* width of the nresistor */

double NRESlength; /* length of the nresistor */
double *NRESposPosptr; /* pointer to sparse matrix diagonal at

* (positive,positive) */
double *NRESnegNegptr; /* pointer to sparse matrix diagonal at

* (negative,negative) */
double *NRESposNegptr; /* pointer to sparse matrix offdiagonal at

* (positive,negative) */
double *NRESnegPosptr; /* pointer to sparse matrix offdiagonal at

* (negative,positive) */
unsigned NRESresGiven : 1; /* flag to indicate nresistance was specified */
unsigned NRESwidthGiven : 1; /* flag to indicate width given */
unsigned NRESlengthGiven : 1; /* flag to indicate length given */
unsigned NREStempGiven : 1; /* indicates temperature specified */
int NRESsenParmNo; /* parameter # for sensitivity use;

set equal to 0 if not a design parameter*/
#ifndef NONOISE

double NRESnVar[NSTATVARS];
#else/* NONOISE */

double *NRESnVar;
#endif/* NONOISE */

} NRESinstance ;

/* per model data */

typedef struct sNRESmodel { /* model structure for a nresistor */
int NRESmodType;/* type index of this device type */
struct sNRESmodel *NRESnextModel;/* pointer to next possible model in

* linked list */

NRESinstance * NRESinstances;/* pointer to list of instances that have this
* model */

IFuid NRESmodName; /* pointer to character string naming this model */

99

doubleNREStnom; /* temperature at which nresistance measured */
double NREStempCoeffl; /* first temperature coefficient of nresistors */
double NREStempCoeff2; /* second temperature coefficient of nresistors */
double NRESsheetRes; /* sheet resistance of devices in ohms/square */
double NRESdefWidth; /* default width of an nresistor */

double NRESnarrow; /* amount by which device is narrower than drawn */

unsigned NREStnomGiven: 1; /* flag to indicate nominal temp. was given */
unsigned NREStclGiven : 1; /* flag to indicate tcl was specified */
unsigned NREStc2Given : 1; /* flag to indicate tc2 was specified */
unsigned NRESsheetResGiven : 1;/* flag to indicate sheet resistance given*/
unsigned NRESdefWidthGiven :1;/* flag to indicate default width given */
unsigned NRESnarrowGiven : 1;/* flag to indicate narrow effect given */

} NRESmodel;

/* device parameters */
#define NRES_RESIST 1
#define NRES_WIDTH 2
#define NRES_LENGTH 3
#define NRES_CONDUCT 4
#define NRES RESIST_SENS 5
#define NRES_CURRENT 6
#define NRES_POWER 7
#define NRES_TEMP 8

/* model parameters */
#define NRES MOD_TC1 101
#define NRES_MOD_TC2 102
#define NRES MOD_RSH 103
#define NRES_MOD_DEFWIDTH 104
#define NRES_MOD_NARROW 105
#define NRES_MOD_R 106
#define NRES_MOD_TNOM 107

/* device questions */
#define NRES_QUEST_SENS_REAL 201
#define NRES QUEST_SENS_IMAG 202
#define NRES_QUEST_SENS_MAG 203
#define NRES_QUEST SENS_PH 204
#define NRES_QUEST_SENS_CPLX 205
#define NRES_QUEST_SENS_DC 206

/* model questions */

#include "nresext.h"

#endif/*NRES*/

A.2.2. nresext.h after renaming

#ifdef STDC
extem int NRESask(CKTcircuit*,GENinstance*,int,IFvalue*,IFvalue*);
extern int NRESdelete(GENmodel ,IFuid,GENinstance);

100

extem void NRESdestroy(GENmodel**);
extem int NRESload(GENmodel*,CKTcircuit*);
extem int NRESmodAsk(CKTcircuit*,GENmodel*,int,IFvalue*);
extem int NRESmDelete(GENmodel**,IFuid,GENmodel*);
extem int NRESmParam(int,IFvalue*,GENmodel*);

extem int NRESparam(int,IFvalue*,GENinstance*,IFvalue*);
extem int NRESpzLoad(GENmodel*,CKTcircuit*,SPcomplex*);
extern int NRESsAcLoad(GENmodel*,CKTcircuit*);
extern int NRESsLoad(GENmodel*,CKTcircuit*);

extern int NRESsSetup(SENstruct*,GENmodel*);
extem void NRESsPrint(GENmodel*,CKTcircuit*);

extem int NRESsetup(SMPmatrix*,GENmodel*,CKTcircuit*,int*);
extem int NREStemp(GENmodel*,CKTcircuit*);
extem int NRESnoise(int,int,GENmodel*,CKTcircuit*,Ndata*,double*);
#else/* stdc */

extem int NRESask0;
extem int NRESdelete0;

extem void NRESdestroy0;
extem int NRESload0;
extem int NRESmodAsk0;
extem int NRESmDelete0;
extem int NRESmParam0;

extem int NRESparam0;
extem int NRESpzLoad0;
extem int NRESsAcLoad0;
extem int NRESsLoad0;
extem int NRESsSetup0;
extern void NRESsPrint0;

extem int NRESsetup0;
extem int NREStemp0;
extem int NRESnoise0;
#endif/* stdc */

A.2.3. nresitf.h after renaming

#ifdef DEV_nres

#ifndef DEV_NRES
#def'me DEV_NRES

#include "nresext.h"

extem IFparrn NRESpTable[];
extem IFparm NRESmPTable[];
extem char *NRESnames[];

extem int NRESpTSize;
extem int NRESmPTSize;

extem int NRESnSize;
extern int NRESiSize;
extern int NRESmSize;

SPICEdev NRESinfo = {

{

IOi

"Nresistor",

"Simple linear negative resistor",

&NRESnSize,
&NRESnSize,

NRESnames,

&NRESpTSize,
NRESpTable,

&NRESmPTSize,
NRESmPTable,

NRESparam,
NRESmParam,
NRESIoad,

NRESsetup,
NRESsetup,
NREStemp,
NULL,
NULL,
NRESload, /* ac load and normal load are identical */
NULL,

NRESdestroy,
#ifdef DELETES

NRESmDelete,
NRESdelete,

#else/* DELETES */

NULL,
NULL,

#endif/* DELETES */

NULL,
NRESask,

NULL,
#ifdef AN_pz

NRESpzLoad,
#else/* AN_pz */

NULL,

#endif/* AN_pz */
NULL,

#ifdef AN_sense

NRESsSetup,
NRESsLoad,
NULL,
NRESsAcLoad,
NRESsPrint,
NULL,

#else/* AN_sense */
NULL,
NULL,
NULL,
NULL,
NULL,

102

NULL,

#endif/* AN_sense */
NULL,/* Disto */

#ifdef AN_noise
NRESnoise,

#else /* AN_noise */
NULL,

#endif/* AN_noise */

&NRESiSize,
&NRESmSize

};

#endif
#endif

A.3. INP2N

This section contains code for the unmodified and modified versions of the function

INP2N found in the file spice3e2/src/lib/inp/inp2n.c.

A.3.1. Contents of inp2n.c before renaming

#include "spice.h"
#include <stdio.h>

#include "ifsim.h"

#include "inpdefs.h"

#include "inpmacs.h"
#include "fteext.h"
#include "suffix.h"

void

INP2Elckt,tab,current)
GENERIC *ckt;
INPtables *tab;
card *current;

103

/* parse a resistor card */
/* Rname <node> <node> [<val>][<mname>][w=<val>][l=<val>] */

int mytype;/* the type we determine resistors are */

int type; /* the type the model says it is */

char *line;/* the part of the current line left to parse */
char *name;/* the resistor's name */

char *model; /* the name of the resistor's model */

char *nname 1; /* the first node's name */

char *nname2; /* the second node's name */

GENERIC *node 1;/* the first node's node pointer */

GENERIC *node2;/* the second node's node pointer */

double val; /* temp to held _nce */

int error; /* error code temporary */

int error 1; /* secondary error code temporary */

INPmodel *thismodel; /* pointer to model structure describing our model */

GENERIC *mdfast; /* pointer to the actual model */

GENERIC *fast; /* pointer to the actual instance */

IFvalue ptemp; /* a value structure to package resl_-'a'a]ce into */

char *nname2; /* the second node's name */

GENERIC *node 1;/* the first node's node pointer */

GENERIC *node2;/* the second node's node pointer */

double val; /* temp to held _]ance */

int error; /* error code temporary */

int errorl; /* secondary error code temporary */

INPmodel *thismodel; /* pointer to model structure describing our model */

GENERIC *mdfast; /* pointer to the actual model */

GENERIC *fast; /* pointer to the actual instance */
IFvalue ptemp; /* a value structure to package res_ce into */
mt waslead; /'_ Ilag to indicate mat tunny unlabeled number was Iound _'/
double leadval;/* actual value of unlabeled number */
IFuid uid; /* uid for default model */

mytype = INPtypelook("l_el_or");

if(mytype < 0) {

LITERRCDevice type _esi_or not supported by this binarykn")
return;

line = current->line;

INPgetTok(&line,&name, I);
INPinsert(&name,tab);

INPgetTok(&line,&nname 1,1);
INPtermlnsert(ckt,&nname 1,tab,&node 1);

INPgetTok(&line,&nname2,1);
INPtermlnsert(ckt,&nname2,tab,&node2);

val = INPevaluate(&line,&error 1,1);

104

/* either not a number -> model, or

* follows a number, so must be a model name

* -> MUST be a model name (or null)

*/

INPgetTok(&line,&model,1);
if(*model) { I* token isn't null */

INPinsert(&model,tab);

thismodel = (INPmodel *)NULL;

current->error = INPgetMod(ckt,model,&thismodel,tab);

if(thismodel != NULL) {

if(mytype != thismodel->INPmodType) {

LITERRCincorrect model type")

return;

}
mdfast = thismodel->INPmodfast;

type = thismodel->INPmodType;

} else {

type = myty_p_;
if(!tab->del_l'nod) __"

/* create default Ldllodel */

IFnewUid(ckt,&uid,(IFuid)NULL, "I_UID_MODEL,(GENERIC**)NULL);

IFC(newModel, (ckt,type,&(tab->defRl_d),uid))

}
mdfast = tab->def_od;

}
IFC(newlnstance,(ckt,mdfast,&fast,name))

} else {

type = mytyj2_;
if(!tab->defl_lnod) 1,. t

/* create default lidlaodel */

IFnewUid(ckt,&uid,(IFuid)NULL,"[_I.[D_MODEL,(GENERIC**)NULL);

IFC(newModel, (ckt,type,&(tab->d_d),uid))

}
IFC(newlnstance,(ckt,tab->defl_l_d,&fast,name))

}
if(errorl == 0) {/* got a _tance above */

ptemp.rValue = val;
GCA(INPpName,("1_]tance",&ptemp,ckt,type,fast))

}
IFC(bindNode,(ckt,fast, 1,node 1))

IFC(bindNode,(ckt,fast,2,node2))
PARSECALL((&line,ckt,type,fast,&leadval,&waslead,tab))

if(waslead) {
ptemp.rValue = leadval;
GCA(INPpName,("t_tance",&ptemp,ckt,type,fast))

}
return;

105

A.3.2. Contents of inp2n.c after renaming

#include "spice.h"
#include <stdio.h>

#include "ifsim.h"

#include "inpdefs.h"

#include "inpmacs.h"
#include "fteext.h"
#include "suffix.h"

void

INP2N(ckt,tab,current)
GENERIC *ckt;
INPtables *tab;

card *current;

{
/* parse a negative resistor card */
/* Nname <node> <node> [<val>][<mname>][w=<val>][l=<val>] */

int mytype;/* the type we determine nresistors are */
int type; /* the type the model says it is */
char *line;/* the part of the current line left to parse */
char *name;/* the nresistor's name */

char *model; /* the name of the nresistor's model */
char *nname 1; /* the first node's name */
char *nname2; /* the second node's name */

GENERIC *node 1;/* the fa'st node's node pointer */

GENERIC *node2;/* the second node's node pointer */
double val; /* temp to held nresistance */
int error; /* error code temporary */
int error 1; /* secondary error code temporary */
INPmodel *thismodel; /* pointer to model structure describing our model */
GENERIC *mdfast; /* pointer to the actual model */
GENERIC *fast; /* pointer to the actual instance */
IFvalue ptemp; /* a value structure to package nresistance into */
int waslead; /* flag to indicate that funny unlabeled number was found */
double leadval;/* actual value of unlabeled number */
IFuid uid; /* uid for default model */

mytype = INPtypelookCNresistor");
if(mytype < 0) {

LITERRCDevice type Nresistor not supported by this binarykn")
return;

}
line = current->line;
INPgetTok(&line,&name, 1);
INPinsert(&name,tab);
INPgetTok(&line,&nname 1,1);
INPtermlnsert(ckt,&nname 1,tab,&node 1);
INPgetTok(&line,&nname2,1);
INPtermlnsert(ckt,&nname2,tab,&node2);
val = INPevaluate(&line,&error 1,1);

106

/* either not a number -> model, or
* follows a number, so must be a model name

* -> MUST be a model name (or null)
*/

INPgetTok(&line,&model, 1);
if(*model) {/* token isn't null */

INPinsert(&model,tab);
thismodel = (INPmodel *)NULL;
current->error = INPgetMod(ckt,model,&thismodel,tab);
if(thismodel != NULL) {

if(mytype != thismodel->INPmodType) {
LITERRCincorrect model type")
return;

}
mdfast = thismodel->INPmodfast;

type -- thismodel->INPmodType;
} else {

type = mytype;
if(!tab->defNmod) {

/* create default N model */

IFnewUid(ckt,&uid,(IFuid)NULL,"N",UID_MODEL,(GENERIC**)NULL);
IFC(newModel, (ckt,type,&(tab->defNmod),uid))

mdfast = tab->defNmod;

IFC(newlnstance,(ckt,mdfast,&fast,name))

} else {
type = mytype;
if(!tab->defNmod) {

/* create default N model */

IFnewUid(ckt,&uid,(IFuid)NULL,"N",UID_MODEL,(GENERIC**)NULL);
IFC(newModel, (ckt,type,&(tab->defNmod),uid))

IFC(newlnstance,(ckt,tab->defNmod,&fast,name))

if(errorl == 0) {/* got a nresistance above */

ptemp.rValue = val;
GCA(INPpName,("nresistance",&ptemp,ckt,type,fast))

IFC(bindNode,(ckt,fast, 1,node 1))
IFC(bindNode,(ckt,fast,2,node2))
PARSECALL((&line,ckt,type,fast,&leadval,&waslead,tab))
if(waslead) {

ptemp.rValue = leadval;
GCA(INPpName,("nresistance",&ptemp,ckt,type,fast))

return;

107

A.4. Parser Header File

The listing below consists of excerpts from the file inpdefs.h in the

spice3e2/src/lib/include directory.

GENERIC *defJmod;
GENERIC *defKmod;
GENERIC *defLmod;

GENERIC *defMmod_

I GENERIC *defNmod i I
GENERIC *defOmod;
GENERIC *defPmod;
GENERIC *defQmod;
GENERIC *defRmod;

void

void

]void
void

void

void

void

void

void

INP2L(GENERIC*,INPtables*,card*);

INP2M(GENERIC*_INPtables*_car d*};

INP2N(GENERIC*,INPt,ables*,card*);
INP20(GENERIC*,INPtables*,card*);

INP2Q(GENERIC*,INPtables*,card*,GENERIC*);

INP2R(GENERIC*,INPtables*,card*);

INP2S(GENERIC*,INPtables*,card*);

INP2T(GENERIC*,INPtables*,card*);

INP2U(GENERIC*,INPtables*,card*);

void 1NP200;
void INP2Q0;
void INP2R0;
void INP2S0;
void INP2T0;
void INP2U0;

108

A.5. INPpas2

In this section excerpts from the function INPpas2, found in

spice3e2/src/lib/inp/inppas2.c are listed. The listing is for INPpas2 after modification.

c = *(current->line);

c = islower(c) ? toupper(c) : c;

switch(c) {

file

case 'R': /* Rname <node> <node> [<val>][<mname>][w=<val>][l=<val>] */

INP2R(ckt,tab,current);

hrc,ak"

I case 'N': /* Nname <node> <node> [<val>][<nmame>][w=<val>][l=<val>] */
INP2N(ckt,tab,current);

break_
case 'C': /* Cname <node> <node> <val> [IC=<val>] */

INP2C(ckt,tab,current);

break;

case 'L': /* Lname <node> <node> <val> [IC=<val>] */
INP2L(ckt,tab,current);

break;

case 'G': /* Gname <node> <node> <node> <node> <val> */

INP2G(ckt,tab,current);

break;

default:

/* the un-implemented device */

LITERRC unknown device type - error kn")

break;

109

A.6. Main Parsing Routine

This section contains partial listings for two simulator files

spice3e2/src/lib/bin/bconf.c and spice3e2/src/lib/fte/subckt.c, after modification.

A.6.1. Contents of bconf.c after modification

#define DEV_dio

#define DEV_ind
#define DEV_isrc
#define DEV_mos 1

#define DEV_mos2
#define DEV res

[#define DEV_nres]
_oetme U_V_vccs

#include "isrcitf.h"
#include "mos 1itf, h"
#include "mos6itf.h"
#include "resitf.h"

I #include "nresitf.h" I
#include "swift.h"
#include "vccsitf.h"
#include "vcvsitf, h"
#include "vsrcitf.h"

#ifdef DEV mos6
&MOS6info,

#endif

#ifdef DEV_res
&RESinfo,

#endif

I #ifdef DEV_nres
&NRESinfo,

#endif

#ifdef DEV_sw
&SWinfo,

#endif

Ii0

A.6.2. Contents of subckt.c after modification

int

inp_numnodes(c)
char c;

!
if (isupper(c))

c = tolower(c);

switch (c) {
| I.case

case '\t':

case '.':

case 'X';

case '*'"

return (0);

case 'b': return (2);

case 'c': return (2);

case 'd': return (2);

case 'e': return (4);

case 'f: return (2);

case 'g': return (4);
case 'h': return (2);

case 'i': return (2);

case 'j': return (3);
case 'k': return (0);

case T: return (2);
case 'm': return (4);

case 'o': return (4);

case 'q': return (4);
case 'r': return (2);

] case 'n': return (2);]
case 's': return t4);
case 't': return (4);

case 'u': return (3);

case 'v': return (2);
case 'w': return (3);

case 'z': return (3);

default:

iii

fprintf(cp_err, "Warning: unknown dev type ->subckt.c: %ckn", c);
return (2);

A.7. Files Used by Make

The listings in this sections are examples of the files utilized by the UNIX make

command when compiling SPICE3E2. Section A.7.1 contains the listing of

spice3e2/src/lib/dev/nres/makedefs before modifcation. Section A.7.2 contains the listing

of spice3e2/src/lib/dev/nres/msc51.bat. Section A.7.3 contains an excerpt from

spice3e2/conf/defaults, and the final subsection contains an excerpt from the file

spice3e2/src/lib/inp/response.lib.

A.7.1. Contents of makedefs before modification

CFILES = res.c resask.c resdel.c resdest.c resload.c resmask.c \

resmdel.c resmpar.c resnoise.c resparam.c respzld.c \

ressacl.c ressetup.c ressload.c ressprt.c ressset.c \

restemp.c

COBJS = res.o resask.o resdel.o resdest.o resload.o resmask.o \

resmdel.o resmpar.o resnoise.o resparam.o respzld.o \

ressacl.o ressetup.o ressload.o ressprt.o ressset.o \

restemp.o

MODULE

LIBRARY

MODULE_TARGET

-- res

= dev

= $(OBJLIB DIR)/$(MODULE)

NUMBER = 1

A.7.2. Contents of msc51.bat before modification

cl fl..\..\.._include/c res.c >> ..\..\..krnsc.out

cl/I..\..\.Ainclude/c resask.c >> ..\..\.._nsc.out

cl/l..\..\..kinclude/c resdel.c >> ..\..\..Lrnsc.out

cl/I..\..\.Ainclude/c resdest.c >> ..\..\.._nsc.out

cl/I..\..\.Ainclude lc resload.c >> ..\..X..krnsc.out

cl/I..\..\.Ainclude/c resmask.c >> ..\..\..kmsc.out

cl/I..\..\.Ainclude/c resmdel,c >> ,,\..\.Amsc.out

cl fl..\..\.Ainclude/c resmpar.c >> ..\..\.._nsc.out

cl/I..\..\.Ainclude/c resnoise.c >> ..\..\.._nsc.out

cl/I..\..\..Linclude/c resparam.c >> ..\..\..knsc.out

cl/I..\..\.Ainclude/c respzld.c >> ..\..\..Xmsc.out

cl/I..\..\.Ainclude/c ressacl.c >> ..\..\.._nsc.out

cl/I..\..\..kinclude/c ressetup.c >> ..\..\..Lrnsc.out

cl fl..\..\.Ainclude/c ressload.c >> ..\..\.Amsc.out

cl/I..\..\.Ainclude/c ressprt.c >> ..\..\..Lrnsc.out

cl/I..\..\..Linclude/c ressset.c >> ..\..\.._,'nsc.out

cl/I..\..\..kinclude/c restemp.c >> ..\..\..kmsc.out

lib..\..\dev 1.lib @response.lib

112

A.7.3. Excerpt from defaults after modification

DEVICES = asrc bjt cap cccs ccvs csw dio ind _et ltra \
mes mosl mos2 mos3 mos6 res _ tra urc vccs \
vcvs vsrc

113

A.7.4. Excerpt

+inp2k.obj&
+inp21.obj&
a-inngm nhiPv

[+inigen.obj& [
+mpio.obj&
+inp2q.obj&
+inp2r.obj&
+inp2s.obj&

from response.lib after modication

A.8. NRESIoad

This section revisits the code for the function NRESload found in

spice3e2/src/lib/dev/nres/nresload.c. Section A.8.1 is the code as last seen renamed. The

code to be changed is boxed. The function modified to load the stamp of a negative resistor

is shown in Section A,8.2.

A.8.1. Excerpt from nresioad.c before modification

/*ARGSUSED*/

int

NRESload(inModel,ckt)

GENmodel *inModel;

CKTcircuit *ckt;

/* actually load the current nresistance value into the

114

* sparse matrix previously provided

*/

register NRESmodel *model = (NRESmodel *)inModel;

register NRESinstance *here;

/* loop through all the nresistor models */

for(; model != NULL; model = model->NRESnextModel) {

/* loop through all the instances of the model */

for (here = model->NRESinstances; here != NULL ;

here=here->NRESnextlnstance) {

I *(here->NRESposPosptr) +- here->NRESconduct;

*(here->NRESnegNegptr) += here->NRESconduct;

*(here->NRESposNegptr) -= here->NRESconduct;

*(here->NRESne_Posptr / -= here->NRESconduct i
}

return(OK);

A.8.2. Excerpt from nresload.c after modification

/* loop through all the nresistor models */

for(; model != NULL; model = model->NRESnextModel) {

/* loop through all the instances of the model */

for (here = model->NRESinstances; here != NULL ;

here=here->NRESnextlnstance) {

*(here->NRESposPosptr) -= here->NRESconduct;

*(here->NRESnegNegptr) -= here->NRESconduct;

*(here->NRESposNegptr) += here->NRESconduct;

*(here->NRESnegPosptr) += here->NRESconduct;

}

return(OK);

115

APPENDIX B.
LOSSLESS TRANSMISSION LINE CODE

This appendix contains code and code fragments from unmodified and modified

versions of a data structure and functions connected with the lossless transmission line.

The modified versions have been adapted to the current source/admittance model of a

lossless transmission line as opposed to the voltage source/impedance model of the

unmodified version. Whenever three vertical dots appear in the listings, some part of the

listing for the file or function has been omitted. This has been done to conserve space by

excluding header files and parts of the function which are irrelevant to the discussions

referring to this appendix.

B.1. Device Data Structure

This section contains excerpts from the file ntradefs.h before and after current

source/admittance model modification. The file is located in the directory

spice3e2/src/include.

B.I.1. Contents of ntradefs.h before modification

typedef struct sNTRAinstance {

struct sNTRAmodel *NTRAmodPtr; /* backpointer to model */

struct sNTRAinstance *NTRAnextlnstance; /* pointer to next instance of
* current model*/

IFuid NTRAname; /* pointer to character string naming this instance */

116

int NTRAposNode 1;
int NTRAnegNode 1;
int NTRAposNode2;
int NTR Ane_Node2:

int NTRAintNode 1;int NTRAmtNode2;

double NTRAimped;

/* number of positive node of end 1 of t. line */
/* number of negative node of end 1 of t. line */
/* number of positive node of end 2 of t. line */
/* number of negative node of end 2 of t. line */

/* number of internal node of end 1 of t. line */

/* number of internal node of end 2 of t. line */
I I

/* impedance - input */

double NTRAconduct; /* conductance - calculated */

double NTRAtd; /* propagation delay */
double NTRAnl; /* normalized length */

double NTRAf; /* frequency at which rd is measured */

double NTRAinputl; /* accumulated excitation for port 1 */

double NTRAinput2; /* accumulated excitation for port 2 */

double NTRAinitVoltl; /* initial condition: voltage on port 1 */

double NTRAJnitCur 1;

double NTRAinitVolt2;

double NTRAinitCur2;

double NTRAreltol;

double NTRAabstol;

double *NTRAdelays;

/* initial condition: current at port 1 */

/* initial condition: voltage on port 2 */

/* initial condition: current at port 2 */

/* relative deriv, tol. for breakpoint setting */

/* absolute deriv, tol. for breakpoint setting */

/* delayed values of excitation */
int NTRAsizeDelay; /* size of active delayed table */
int NTR A_ll_13elzy" /* zlloc'ntecl riT_ of clelnveci tnhle */

int NTRAbrEq 1; /* number of branch equaffon for end 1 of t. line */

int NTRAbrEq2 i /* number of branch equation for end 2 of t. line */
I

double
double
double
double
double
double

double
double
double
double
double
double
double
double

I

double
double
double
double
double
double

*NTRAibr llbr2Ptr;
*NTRAibrllnt 1Ptr;

*NTRAibr 1Neg 1Ptr;
*NTRAibr 1Neg2Ptr;
*NTRAibr 1Pos2Ptr;
*NTRAibr21brlPtr;

I

*NTRAibr2Int2Ptr;

*NTRAibr2Neg 1Ptr;
*NTRAibr2Neg2Ptr;
*NTRAibr2Pos 1Ptr;
*NTRAint llbrlPtr;
*NTRAint lint 1Ptr;
*NTRAintlPoslPtr;
*NTRAint2Ibr2Ptr;

I
I

*NTRAint2Int2Ptr;
*NTRAint2Pos2Ptr;

*NTRAneg 11br 1Ptr;
*NTRAneg2Ibr2Ptr;
*NTRAposllntlPtr;
*NTRApos 1Pos 1Ptr;

double *NTRApos2Int2Ptr;
double *NTRApos2Pos2Ptr;

/* pointer to sparse matrix */

/* pointer to sparse matrix */
/* pointer to sparse matrix */
/* pointer to sparse matrix */
/* pointer to sparse matrix */

/* pointer to sparse matrix */

/* pointer to sparse matrix */
/* pointer to sparse matrix */
/* pointer to sparse matrix */
/* pointer to sparse matrix */

/* pointer to sparse matrix */
/* pointer to sparse matrix */

/* pointer to sparse matrix */
/* pointer to sparse matrix */

II

/* pointer to sparse matrix */
/* pointer to sparse matrix */
/* pointer to sparse matrix */
/* pointer to sparse matrix */
/* pointer to sparse matrix */
/* pointer to sparse matrix */

/* pointer to sparse matrix */
/* pointer to sparse matrix */

117

unsigned NTRAimpedGiven : 1;/* flag to indicate impedence was specified */

unsigned NTRAtdGiven : 1; /* flag to indicate delay was specified */

unsigned NTRAnlGiven : 1; /* flag to indicate norm length was specified */

unsigned NTRAfGiven : 1; /* flag to indicate freq was specified */

unsigned NTRAicV1Given : 1; /* flag to ind. init. voltage at port I given */

unsigned NTRAicC 1Given : 1; /* flag to ind. init. current at port 1 given */

unsigned NTRAicV2Given : 1; /* flag to ind. init. voltage at port 2 given */

unsigned NTRAicC2Given : 1; /* flag to ind. init. current at port 2 given */

unsigned NTRAreltolGiven: 1; /* flag to ind. relative deriv, tol. given */

unsigned NTRAabstolGiven: 1; /* flag to ind. absolute deriv, tol. given */
} NTRAinstance ;

/* per model data */

typedef struct sNTRAmodel { /* model structure for a ntransmission lines */

int NTRAmodType;/* type index of this device type */

struct sNTRAmodel *NTRAnextModel;/* pointer to next possible model in
* linked list */

NTRAinstance * NTRAinstances;/* pointer to list of instances that have this
* model */

IFuid NTRAmodName; /* pointer to character string naming this model */
} NTRAmodel;

/* device parameters */
#define NTRA_Z0 1

#define NTRA_TD 2

#define NTRA_NL 3

#define NTRA_FREQ 4

#define NTRA V1 5

#define NTRA_I1 6

#define NTRA_V2 7

#define NTRA_I2 8

#define NTRA_IC 9
#define NTRA_RELTOL 10

#define NTRA_ABSTOL 11

#define NTRA_POS_NODE 1 12

#define NTRA NEG_NODE1 13

#define NTRA_POS_NODE2 14

#define NTRA_NEG_NODE2 15
#define NTRA_INPUT1 16
#define NTRA_INPUT2 17
#define NTRA DEI JAY 18

#define NTRA_BR_EQ 1 19
#define NTRA_BR_EQ2 20
#define NTRA INT_NODE 1 21
#define NTRA_INT_NODE2 22

118

B.I.2. Contents of ntradefs.h after modification

/* information used to describe a single instance */

typedef struct sNTRAinstance {
struct sNTRAmodel *NTRAmodPtr; /* backpointer to model */
struct sNTRAinstance *NTRAnextlnstance; /* pointer to next instance of

* current model*/

IFuid NTRAname; /* pointer to character string naming this instance */

int NTRAposNode 1;
int NTRAnegNode 1;
int NTRAposNode2;
int NTRAnegNOde2;

/* number of positive node of end 1 of t. line */
/* number of negative node of end 1 of t. line */
/* number of positive node of end 2 of t. line */
/* number of negative node of end 2 of t. line */

double NTRAimped; /* impedance - input */
double NTRAconduct; /* conductance - calculated */

double NTRAtd; /* propagation delay */
double NTRAnl; /* normalized length */

double NTRAf; /* frequency at which nl is measured */

double NTRAinputl; /* accumulated excitation for port 1 */
double NTRAinput2; /* accumulated excitation for port 2 */
double NTRAinputlOld; /* prev val of accumulated excitation for port 1 */
double NTRAinput2Old; /* prev val of accumulated excitation for port 2 */

double NTRAinitVoltl;
double NTRAinitCur 1;
double NTRAinitVolt2;
double NTRAinitCur2;

/* initial condition: voltage on port 1 */
/* initial condition: current at port 1 */
/* initial condition: voltage on port 2 */
/* initial condition: current at port 2 */

double NTRAreltol;
double NTRAabstol;

/* relative deriv, tol. for breakpoint setting */
/* absolute deriv, tol. for breakpoint setting */

double *NTRAdelays;
int NTRAsizeDelay;
int NTRAallocDelay;

/* delayed values of excitation */
/* size of active delayed table */
/* allocated size of delayed table */

double
double

double
double
double

/* FOR USE WITH STAMP FILLING */

double *NTRAposlPoslPtr; /* pointer to sparse matrix */
double *NTRAposlNeglPtr; /* pointer to sparse matrix */
double *NTRAneglPoslPtr; /* pointer to sparse matrix */

NTRAneglNeglPtr; / pointer to sparse matrix */
NTRApos2Pos2Ptr; / pointer to sparse matrix */
NTRApos2Neg2Ptr; / pointer to sparse matrix */
NTRAneg2Pos2Ptr; / pointer to sparse matrix */
NTRAneg2Neg2Ptr; / pointer to sparse matrix */

unsigned NTRAimpedGiven : 1;/* flag to indicate impedence was specified */

119

unsigned NTRAtdGiven : 1; /* flag to indicate delay was specified */

unsigned NTRAnlGiven : 1; /* flag to indicate norm length was specified */
unsigned NTRAfGiven : 1; /* flag to indicate freq was specified */
unsigned NTRAicV1Given : 1; /* flag to ind. init. voltage at port 1 given */
unsigned NTRAicC 1Given : 1; /* flag to ind. init. current at port 1 given */
unsigned NTRAicV2Given : I; /* flag to ind. init. voltage at port 2 given */
unsigned NTRAicC2Given : 1; /* flag to ind. init. current at port 2 given */
unsigned NTRAreltolGiven: 1; /* flag to ind. relative deriv, tol. given */
unsigned NTRAabstolGiven: 1; /* flag to ind. absolute deriv, tol. given */

} NTRAinstance ;

/* per model data */

typedef struct sNTRAmodel { /* model structure for an ntransmission lines */

int NTRAmodType;/* type index of this device type */
struct sNTRAmodel *NTRAnextModel;/* pointer to next possible model in

* linked list */

NTRAinstance * NTRAinstances;/* pointer to list of instances that have
this model */

IFuid NTRAmodName; /* pointer to character string naming this model*/

} NTRAmodel;

/* device parameters */
#define NTRA_Z0 1
#define NTRA_TD 2
#define NTRA_NL 3
#define NTRA_FREQ 4
#define NTRA_V1 5
#define NTRA I1 6
#define NTRA_V2 7
#define NTRA I2 8
#define NTRA_IC 9
#define NTRA_RELTOL 10
#define NTRA_ABSTOL 11
#define NTRA_POS_NODE 1 12
#define NTRA_NEG_NODE1 13
#define NTRA_POS_NODE2 14
#define NTRA_NEG_NODE2 15
#define NTRA INPUT 1 16
#define NTRA INPUT2 17
#define NTRA_DELAY 18

120

B.2. NTRAsetup

This section contains the listings of the function NTRAsetup found in file

spice3e2/srcllib/devlntratntrasetup.c before and after modification to operate as part of the

current source/admittance model.

B.2.1. Contents of ntrasetup.c before modification

B

int

NTRAsetup(matrix,inModel,ckt,state)

register SMPmatrix *matrix;
GENmodel *inModel;

register CKTcircuit *ckt;
int *state;

/* load the ntransmission line structure with those pointers needed later

* for fast matrix loading
*/

{
register NTRAmodel *model = (NTRAmodel *)inModel;

register NTRAinstance *here;

int error;

CKTnode *tmp;

/* loop through all the ntransmission line models */

for(; model != NULL; model = model->NTRAnextModel) {

/* loop through all the instances of the model */

for (here = model->NTRAinstances; here != NULL ;
here=here->NTRAnextlnstance) {

if(here->NTRAbrEq 1=--0) {
error = CKTmkVolt(ckt,&tmp,here->NTRAname,"il ");
if(error) return(error);
here->NTRAbrEql = tmp->number;

}

if(here->NTRAbrEq2==0) {
error = CKTmkVolt(ckt,&tmp,here->NTRAname,"i2");
if(error) return(error);

here->NTRAbrEq2 = tmp->number;
}

121

I

if(here->NTRAintNode 1==0) {
error = CKTmkVolt(ckt,&tmp,here->NTRAname,"int I ");
if(error) return(error);

} here->NTRAintNodel = tmp->number;

if(here->NTRAintNode2==0) { "
error = CKTrnkVolt(ckt,&tmp,here->NTRAname, 'int2");
if(error) return(error);

} here->NTRAintNode2 = tmp->number;

/* allocate the delay table */
here->NTRAdelays = (double *)MALLOC(I 5*sizeof(double));

here->NTRAallocDelay = 4;

/* macro to make elements with built in test for out of memory */

#define TSTALLOC(ptr,first,second) \

if((here->ptr = S MPmakeElt(matrix,here->first,here->second))==(double *)NULL) {\
return(E_NOMEM);\

TSTALLOC(NTRAibr 11br2Ptr, NTRAbrEq 1, NTRAbrEq2)
TSTALLOC(NTRAibr 11ntl Ptr, NTRAbrEq 1, NTRAintNode 1)
TSTALLOC(NTRAibr 1Neg 1Ptr, NTRAbrEq 1, NTRAnegNode 1)
TSTALLOC(NTRAibr INeg2Ptr, NTRAbrEq 1, NTRAnegNode2)
TSTALLOC(NTRAibr 1Pos2Ptr, NTRAbrEq 1, NTRAposNode2)
TSTALLOC(NTRAibr2Ibr 1Ptr, NTRAbrEq2, NTRAbrEq 1)
TSTALLOC(NTRAibr2Int2Ptr, NTRAbrEq2, NTRAintNode2)
TSTALLOC(NTRAibr2NeglPtr, NTRAbrEq2, NTRAnegNodel)

I
I

TSTALLOC(NTRAibr2Neg2Ptr, NTRAbrEq2, NTRAnegNode2)
TSTALLOC(NTRAibr2Pos 1Ptr, NTRAbrEq2, NTRAposNode 1)
TSTALLOC(NTRAint 11br 1Ptr, NTRAintNode 1, NTRAbrEq 1)
TSTALLOC(NTRAint 11nt 1Ptr, NTRAintNode 1, NTRAintNode 1)
TSTALLOC(NTRAint 1Pos 1Ptr, NTRAintNode 1, NTRAposNode 1)
TSTALLOC(NTRAint2Ibr2Ptr, NTRAintNode2, NTRAbrEq2)
TSTALLOC(NTRAint2Int2Ptr, NTRAintNode2, NTRAintNode2)

I TSTALLOC(NTRAint2Pos2Ptr, NTRAintNode2, NTRAposNode2)

TSTALLOC(NTRAneg 11br 1Ptr, NTRAnegNode 1, NTRAbrEq 1)
TSTALLOC(NTRAneg2Ibr2Ptr, NTRAnegNode2, NTRAbrEq2)
TSTALLOC(NTRApos 11nt 1Ptr, NTRAposNode 1, NTRAintNode 1)
TSTALLOC(NTRApos 1Pos 1Ptr, NTRAposNode 1, NTRAposNode 1)
TSTALLOC(NTRApos2Int2Ptr, NTRAposNode2, NTRAintNode2)

TSTALLOC(NTRApos2Pos2Ptr, NTRAposNode2, NTRAPosNode2)

122

B.2.2. Contents of ntrasetup.c after modification

int

NTRAsetup(matrix,inModel,ckt,state)
register SMPmatrix *matrix;
GENmodel *inModel;

register CKTcircuit *ckt;
int *state;

/* load the transmission line structure with those pointers needed later

* for fast matrix loading
*/

{
FILE *data;

register NTRAmodel *model = (NTRAmodel *)inModel;
register NTRAinstance *here;
int error;
CKTnode *tmp;

/* loop through all the transmission line models */
for(; model != NULL; model = model->NTRAnextModel) {

/* loop through all the instances of the model */
for (here = model->NTRAinstances; here != NULL ;

here=here->NTRAnextlnstance) {

/* allocate the delay table */
here->NTRAdelays = (double *)MALLOC(15*sizeof(double));
here->NTRAallocDelay = 4;

/* macro to make elements with built in test for out of memory */
#define TSTALLOC(ptr,first,second) \
if((here->ptr = SMPmakeElt(matrix,here->first,here->second))==(double
*)NULL){\

retum(E NOMEM);\

}

TSTALLOC(NTRApos 1Pos 1Ptr, NTRAposNode 1, NTRAposNode 1)
TSTALLOC(NTRApos 1Neg 1Ptr, NTRAposNode 1, NTRAnegNode 1)
TSTALLOC(NTRAneg 1Pos 1Ptr, NTRAnegNode 1, NTRAposNode 1)
TSTALLOC(NTRAneg 1Neg 1Ptr, NTRAnegNode 1, NTRAnegNOde 1)

TSTALLOC(NTRApos2Pos2Ptr, NTRAposNode2, NTRAposNode2)
TSTALLOC(NTRApos2Neg2Ptr, NTRAposNode2, NTRAnegNode2)
TSTALLOC(NTRAneg2Pos2Ptr, NTRAnegNode2, NTRAposNode2)
TSTALLOC(NTRAneg2Neg2Ptr, NTRAnegNode2, NTRAnegNode2)

123

B.3. NTRAask

This section lists the contents of spice3e2/src/lib/dev/ntra/ntraask.c before the

current source/admittance model changes. The listing after the modifications is not shown.

int

NTRAask(ckt,inst,which,value,select)

CKTcircuit *ckt;

GENinstance *inst;

int which;

IFvalue *value;
IFvalue *select;

{
NTRAinstance *here = (NTRAinstance *)inst;
int temp;

switch(which) {

case NTRA_POS_NODE 1:

value->iValue = here->NTRAposNode 1;
return (OK);

case NTRA_NEG_NODE1:

value->iValue = here->NTRAnegNodel;

return (OK);
case NTRA_POS_NODE2:

value->iValue = here->NTRAposNode2;
return (OK);

case NTRA_NEG_NODE2:

value->iValue = here->NTRAnegNode2;
return (OK);

case NTRA_INT_NODE 1:
value->iValue = here->NTRAintNode 1;
return (OK);

case NTRA_INT_NODE2:
value->iValue = here->NTRAintNode2;
return (OK);

124

case NTRA_BR_EQ 1:
value->rValue = here->NTRAbrEq 1;

return (OK);
case NTRA_BR_EQ2:

value->rValue = here->NTRAbrEq2;

return (OK);

)
return (OK);

default:

return (E_BADPARM);

}
/* NOTREACHED */

B.4. NTRAIoad

The following two subsections contain excerpts from the NTRAIoad function found

in spice3e2/src/lib/dev/ntra/ntraload.c. The first listing is before the function has been

modified to handle the current source/admittance stamp. The second listing is after the

modification.

B.4.1. Contents of ntraload.c before modification

int

NTRAload(inModel,ckt)
GENmodel *inModel;

CKTcircuit *ckt;

/* actually load the current values into the

* sparse matrix previously provided
*/

125

register NTRAmodel *model = (NTRAmodel *)inModel;

register NTRAinstance *here;

double tl,t2,t3;

double fl,f2,f3;

register int i;

/* loop through all the ntransmission line models */
for(; model != NULL; model = model->NTRAnextModel) {

/* loop through all the instances of the model */
for (here = model->NTRAinstances; here != NULL ;

here=here->NTRAnextlnstance) {

*(here->NTRApos 1Pos 1Ptr) += here->NTRAconduct;
* (here->NTRApos 11nt 1Ptr) -= here->NTRAconduct;
*(here->NTRAnegllbrlPtr) -= 1;
*(here->NTRApos2Pos2Ptr) += here->NTRAconduct;
*(here->NTRAneg2Ibr2Ptr)-= 1;
*(here->NTRAint 1Pos 1Ptr) -= here->NTRAconduct;
*(here->NTRAintllntlPtr) += here->NTRAconduct;
*(here->NTRAint 11br 1Ptr) += 1;

*(here->NTRAint2Int2Ptr) += here->NTRAconduct;
*(here->NTRAint2Ibr2Ptr) += 1;

*(here->NTRAibr 1Neg 1Ptr) -= 1;
*(here->NTRAibrllntlPtr) += 1;

*(here->NTRAibr2Neg2Ptr) -= 1;
*(here->NTRAibr2Int2Ptr) += 1;

*(here->NTRApos2Int2Ptr) -= here->NTRAconduct;
*(here->NTRAint2Pos2Ptr) -= here->NTRAconduct;

iflckt->CKTmode & MODEDC t {
*(here->NTRAibr 1Pos2Ptr) -= 1;

*(here->NTRAibrlNeg2Ptr) += 1;
* (here->NTRAibr 1Ibr2Ptr) -=(1-ckt->CKTgrnin)*here->NTRAimped;
*(here->NTRAibr2PoslPtr) -= 1;
*(here->NTRAibr2Neg 1Ptr) += 1;

*there->NTRAibr2Ibr 1Ptr) -= / 1-ckt->CKT_min/*here->NTRAimped i
else I

if _ckt->CKTmode & MODEIN1TTRAN) {
"[f_kt-2,_,KTmode & MODEUIC_ I

here->NTRAinputl = here->NTRAinitVolt2 + here->NTRAinitCur2
* here->NTRAimped;

here->NTRAinput2 = here->NTRAinitVolt 1 + here->NTRAinitCurl
* here->NTR6imped %

else {

126

here->NTRAinput 1 =
(*(ckt->CKTrhsOld+here->NTRAposNode2)
- *(ckt->CKTrhsOld+here->NTRAnegNode2))
+ (*(ckt->CKTrhsOld+here->NTRAbrEq2)

*here->NTRAimped);

here->NTRAinput2 =
(*(ckt->CKTrhsOld+here->NTRAposNode 1)
- *(ckt->CKTrhsOld+here->NTRAnegNodel))
+ (*(ckt->CKTrhsOld+here->NTRAbrEq 1)

*here->NTRAimped);

}
*(here->NTRAdelays) = -2*here->NTRAtd;

*(here->NTRAdelays +3) = -here->NTRAtd;

*(here->NTRAdelays+6) = 0;

*(here->NTRAdelays+ 1) = *(here->NTRAdelays +4) =

*(here->NTRAdelays+7) = here->NTRAinputl;

*(here->NTRAdelays+2) = *(here->NTRAdelays +5) =

*(here->NTRAdelays+8) = here->NTRAinput2;

here->NTRAsizeDelay = 2;

} else {
if(ckt->CKTmode & MODEIN1TPRED) {

}
}

*(ckt->CKTrhs + here->NTRAbrEq 1) += here->NTRAinput 1;*_ckt->CKTrhs + here->NTRAbrEq2) += here->NTRAinput2 i
}

}
}
return(OK);

B.4.2. Contents of ntraload.c after modification

int

NTRAload(inModel,ckt)
GENmodel *inModel;
CKTcircuit *ckt;

/* actually load the current values into the
* sparse matrix previously provided
*/

{

127

/* Variables declared for inside the function */

register NTRAmodel *model = (NTRAmodel *)inModel;
register NTRAinstance *here;
double t 1,t2,t3;
double fl,f2,f3;

register int i;

/* loop through all the NTRAnsmission line models */
for(; model != NULL; model = model->NTRAnextModel) {

/* loop through all the instances of the model */
for (here = model->NTRAinstances; here != NULL ;

here=here->NTRAnextlnstance) {

/* MOST OF THE STAMP FILLED HERE */

*(here->NTRApos 1Pos 1Ptr) += here->NTRAconduct;
*(here->NTRApos 1Neg 1Ptr) -= here->NTRAconduct;

*(here->NTRAneg 1Pos 1Ptr) -= here->NTRAconduct;
*(here->NTRAneg 1Neg 1Ptr) += here->NTRAconduct;

*(here->NTRApos2Pos2Ptr) += here->NTRAconduct;
*(here->NTRApos2Neg2Ptr) -= here->NTRAconduct;
*(here->NTRAneg2Pos2Ptr) -= here->NTRAconduct;
*(here->NTRAneg2Neg2Ptr) += here->NTRAconduct;

/* STAMP FILL FOR DC ANALYSIS */
/* This section is to be left commented out until the stamp fill for the transient

analysis
stamp filling and solving for the line is determined as functioning correctly.

Until then
use initial conditions specification from the input file. Once transient analysis is

working this section is the place to modify the stamp for DC analysis.
*/

if(ckt->CKTmode & MODEDC) {
/*

*/

*(here->NTRAibrl Pos2Ptr) -= 1;
*(here->NTRAibrlNeg2Ptr) += 1;
*(here->NTRAibrllbr2Ptr) -= (1-ckt->CKTgmin)*here->NTRAimped;
*(here->NTRAibr2PoslPtr)-= 1;
*(here->NTRAibr2Neg 1Ptr) += 1;
* (here->NTRAibr2Ibr 1Ptr) -= (1-ckt->CKTgmin)* here->NTRAimped;

} else {
if (ckt->CKTmode & MODEINITI'RAN) {

/* THE INITIAL TRANSIENT RUN */
if(ckt->CKTmode & MODEUIC) {

/* USE THE INITIAL CONDITIONS SUPPLIED INSTEAD OF THE DC

ANALYSIS VALUES */

here->NTRAinputl = here->NTRAconduct* here->NTRAinitVolt2
+ here->NTRAinitCur2;

128

here->NTRAinput2 = here->NTRAconduct * here->NTRAinitVolt 1
+ here->NTRAinitCur 1;

} else {
/* COMMENTED OUT TILL DEBUGGING FINISHED */
/* USES THE DC VALUES AS START */
/*

here->NTRAinputl = here->NTRAinput2Old
+ here->NTRAeonduet *(*(ekt->CKTrhsOld

+ here->NTRAposNode2) - *(ckt->CKTrhsOld
+ here->NTRAnegNode2));

here->NTRAinput2 = here->NTRAinput 1Old
+ here->NTRAconduct *(*(ckt->CKTrhsOld

+ here->NTRAposNodel) - *(ckt->CKTrhsOld
+ here->NTRAnegNode 1));

*/

/* SET UP THE DELAY TABLE */

*(here->NTRAdelays)=-2*here->NTRAtd;
*(here->NTRAdelays +3) = -here->NTRAtd;
*(here->NTRAdelays+6) = 0;
*(here->NTRAdelays+l) = *(here->NTRAdelays +4) =

*(here->NTRAdelays+7) = here->NTRAinput 1;
*(here->NTRAdelays+2) = *(here->NTRAdelays +5) =

*(here->NTRAdelays+8) = here->NTRAinput2;
here->NTRAsizeDelay = 2;

} else {

/* FIND INTERPOLATED VALUES */

}
}

/* FILL THE RIGHT HAND SIDE */

*(ckt->CKTrhs + here->NTRAposNode 1) += here->NTRAinput 1;
*(ckt->CKTrhs + here->NTRAnegNode 1) -= here->NTRAinput 1;
*(ckt->CKTrhs + here->NTRAposNode2) += here->NTRAinput2;
*(ckt->CKTrhs + here->NTRAnegNode2) -= here->NTRAinput2;
here->NTRAinput 1Old = here->NTRAinput 1;
here->NTRAinput2Old = here->NTRAinput2;

}
}

}
return(OK);

129

B.5. NTRAacct

The following two subsections contain excerpts from the NTRAacct function found

in spice3e2/src/lib/dev/ntra/ntraacct.c. The first listing is before the function has been

modified to handle the current source/admittance stamp. The second listing is after the

modification.

B.5.1. Contents of ntraacct.c before modification

int

NTRAaccept(ckt,inModel)
register CKTcircuit *ckt;

GENmodel *inModel;

{
register NTRAmodel *model = (NTRAmodel *)inModel;

register NTRAinstance *here;
register int i=0,j;

double vl,v2,v3,v4;

double v5,v6,dl,d2,d3,d4;

double *from,*to;
int error;

/* loop through all the ntransmission line models */

for(; model != NULL; model = model->NTRAnextModel) {

/* loop through all the instances of the model */

for (here = model->NTRAinstances; here != NULL ;

here=here->NTRAnextlnstance) {

if((ckt->CKTtime - here->NTRAtd) > *(here->NTRAdelays+6)) {
/* shift! */

for(i=2;i<here->NTRAsizeDelay &&

(ckt->CKTtime - here->NTRAtd > *(here->NTRAdelays+3*i));i++)

{/* loop does it all */; }
i -= 2;

forfj =i;j<=here->NTRAsizeDelay;j++) {
from = here->NTRAdelays + 3*j;

130

to = here->NTRAdelays + 3*(j-i);

*(to) = *(from);

*(to+l) = *(from+l);

*(to+2) = *(from+2);

t
here->NTRAsizeDelay -= i;

if(ckt->CKTtime - *(here->NTRAdelays+3*here->NTRAsizeDelay) >

ckt->CKTminBreak) {

if(here->NTRAallocDelay <= here->NTRAsizeDelay) {

/* need to grab some more space */

here->NTRAallocDelay +- 5;
here->NTRAdelays = (double *)REALLOC((char *)here->NTRAdelays,

(here->NTRAallocDelay+l)*3*sizeof(double));

here->NTRAsizeDelay ++;

to = (here->NTRAdelays +3*here->NTRAsizeDelay);
*to = ckt->CKTtime;

to = (here->NTRAdelays+l+3*here->NTRAsizeDelay);
*to = (*(ckt->CKTrhsOld + here->NTRAposNode2)

-*(ckt->CKTrhsOld + here->NTRAnegNode2))
+ *(ckt->CKTrhsOld + here->NTRAbrEq2)*

here->NTRAimped;
*(here->NTRAdelays+2+3*here->NTRAsizeDelay) =

(*(ckt->CKTrhsOld + here->NTRAposNode 1)
-*(ckt->CKTrhsOld + here->NTRAnegNodel))

+ *(ckt->CKTrhsOld + here->NTRAbrEq 1)*
here->NTRAimped;

}
}
return(OK);

B.5.2. Contents of ntraaccct.c after modification

int

NTRAaccept(ckt,inModel)
register CKTcircuit *ckt;
GENmodel *inModel;

{

131

register NTRAmodel *model = (NTRAmodel *)inModel;
register NTRAinstance *here;
register int i=0,j;
double v 1,v2,v3,v4;
double v5,v6,d 1,d2,d3,d4;

double *from,*to;
int error;

/* loop through all the NTRAnsmission line models */
for(; model != NULL; model = model->NTRAnextModel) {

/* loop through all the instances of the model */
for (here = model->NTRAinstances; here != NULL ;

here=here->NTRAnextlnstance) {

if((ckt->CKTtime - here->NTRAtd) > *(here->NTRAdelays+6)) {
/* shift? */

for(i=2;i<here->NTRAsizeDelay &&
(ckt->CKTtime - here->NTRAtd > * (here->NTRAdelays+3 *i)) ;i++)

{/* loop does it all */; }
i -= 2;

for(j=i;j<=here->NTRAsizeDelay;j++) {
from = here->NTRAdelays + 3*j;
to = here->NTRAdelays + 3*(j-i);
• (to) = *(from);
• (to+l) = *(from+l);
• (to+2) = *(from+2);

here->NTRAsizeDelay -= i;
J

if(ckt->CKTtime - *(here->NTRAdelays+3*here->NTRAsizeDelay) >
ckt->CKTminBreak) {

if(here->NTRAallocDelay <= here->NTRAsizeDelay) {
/* need to grab some more space */
here->NTRAallocDelay += 5;
here->NTRAdelays = (double *)REALLOC(
(char *)here->NTRAdelays, (here->NTRAallocDelay+l)
*3*sizeof(double));

}
here->NTRAsizeDelay ++;

/* Inserting present data into delay table */
to = (here->NTRAdelays +3*here->NTRAsizeDelay);
*to = ckt->CKTtime;

to = (here->NTRAdelays+ 1+3*here->NTRAsizeDelay);
*to = 2*here->NTRAconduct * (*(ckt->CKTrhsOld

+ here->NTRAposNode2) - *(ckt->CKTrhsOld
+ here->NTRAnegNode2)) - here->NTRAinput2;

to = (here->NTRAdelays+2+3*here->NTRAsizeDelay);
*to = 2*here->NTRAconduct * (*(ckt->CKTrhsOld
+ here->NTRAposNode 1) - *(ckt->CKTrhsOld

132

+ here->NTRAnegNode 1)) - here->NTRAinput I;

B.6. NTRAtrunc

The following two subsections contain excerpts from the NTRAtrunc function

found in spice3e2/src/lib/dev/ntraJntratrunc.c. The first listing is before the function has

been modified to handle the current source model. The second listing is after the

modification.

B.6.1. Contents of ntratrunc.c before modification

int

NTRAtrunc(inModeI,ckt,timeStep)
GENmodel *inModel;

register CKTcircuit *ckt;

double *timeStep;

register NTRAmodel *model = (NTRAmodel *)inModel;

register NTRAinstance *here;

double v 1,v2,v3,v4;
double v5,v6,d 1,d2,d3,d4;

double tmp;

/* loop through all the ntransmission line models */
for(; model != NULL; model = model->NTRAnextModel) {

/* loop through all the instances of the model */

for (here = model->NTRAinstances; here != NULL ;
here=here->NTRAnextlnstance) {

| II

vl = (*(ckt->CKTrhsOld + here->NTRAposNode2)

- *(ckt->CKTrhsOld + here->NTRAnegNode2))
+ *(ckt->CKTrhsOld + here->NTRAbrEq2) *

here->NTRAimped;

133

v2 = *(here->NTRAdelays+l +3*(here->NTRAsizeDela' 0);

v3 = *(here->NTRAdelays+l+3*(here->NTRAsizeDela' .1));

v4 = (*(ckt->CKTrhsOld + here->NTRAposNodel)

- *(ckt->CKTrhsOld + here->NTRAnegNode 1))
+ *(ckt->CKTrhsOld + here->NTRAbrEq 1) *

here->NTRAimped;

v5 = *(here->NTRAdelays+2+3*(here->NTRAsizeDela¢));

v6 = *(here->NTRAdelays+2+3* (here->NTRAsizeDelay- 1));

d 1 = (v 1-v2)/ckt->CKTdeltaOld[1];

d2 = (v2-v3)/ckt->CKTdeltaOld[2];

d3 = (v4-v5)/ckt->CKTdeltaOld[1];

d4 = (v5-v6)/ckt->CKTdeltaOld[2];

B.6.2. Contents of ntratrunc.c after modification

int

NTRAtrunc(inModel,ckt,timeStep)
GENmodel *inModel;

register CKTcircuit *ckt;
double *timeStep;

register NTRAmodel *model = (NTRAmodel *)inModel;
register NTRAinstance *here;
double vl,v2,v3,v4;
double v5,v6,d 1,d2,d3,d4;

double tmp;

/* loop through all the NTRAnsmission line models */
for(; model != NULL; model = model->NTRAnextModel) {

/* loop through all the instances of the model */
for (here = model->NTRAinstances; here != NULL ;

here=here->NTRAnextlnstance) {

v 1 = (*(ckt->CKTrhsOld + here->NTRAposNode2)
- *(ckt->CKTrhsOld + here->NTRAnegNode2))
+ here->NTRAinput2 * here->NTRAimped;

v2 = *(here->NTRAdelays+ 1+3*(here->NTRAsizeDelay));
v3 = *(here->NTRAdelays+ 1+3*(here->NTRAsizeDelay- 1));
v4 = (*(ckt->CKTrhsOld + here->NTRAposNode 1)

- *(ckt->CKTrhsOld + here->NTRAnegNode 1))
+ here->NTRAinputl * here->NTRAimped;

v5 = *(here->NTRAdelays+2+3*(here->NTRAsizeDelay));

v6 = *(here->NTRAdelays+2+3*(here->NTRAsizeDelay- 1));

134

d 1 = (v 1-v2)/ckt->CKTdeltaOld[1];
d2 = (v2-v3)/ckt->CKTdeltaOld[2];
d3 = (v4-v5)/ckt->CKTdeltaOld[1];
d4 = (v5-v6)/ckt->CKTdeltaOld[2];

135

APPENDIX C.
LOSSY TRANSMISSION LINE CODE

This appendix contains code and code fragments from unmodified and modified

versions of a data structure and functions connected with the lossy transmission line.

Whenever three vertical dots appear in the listings, some part of the listing for the file or

function has been omitted. This has been done to conserve space by excluding header files

and parts of the function which are irrelevant to the discussions referring to this appendix.

C.1. Function Decleration and Argument
Description of G

The following lists the function prototype for G with short explanations of the

arguments of G. The function is found in the file spice3e2/src/lib/dev/ntra/vdmmodel.c.

The function prototype is:

double G(int L, double *ay, double *fcy, int My, double Ty,
double xyold, double Aw, double *aw, double *fcw,

int Mw, double Tw, double xw, double xwold, double *Isp

The following is a short listing and explanation of the input variables.

variables supplied in the input file (see the Input File section) are marked as such.

L The index of the current source for which the subroutine is doing
calculations (1 or 2). This is determined by the calling program.

*ay A pointer to a set of difference approximation parameters for the
characteristic admittance. There are My(1 or 2) of these.

[ay 1 when L= 1 and ay2 when L=2], supplied see NOTE.

*fcw See *ay. [fcwl when L=I and fcw2 when L=2], supplied_see
NOTE.

My The difference model order for characteristic admittance. This is

also the number of ay(1 or 2) and fcw(1 or 2) values, and comes

The

136

xyold

mw

*aw

*fcw

Mw

Tw

xw

xwold

*Isp

before ay and fcw in the input file and can be used to tell a read-in
program how many values to read-in or how much space to
allocate.

[My I when L= 1 and My2 when L=2], supplied.

The current value of the time step. Ty = t(n) - t(n- 1) see Figure

The old value of port voltage xy at t(n-1). V1 ifL=l and V2 if L=2
see Figure C. 1.

The final value of the propagation function.

[Awb ifL=l and AwfifL=2] supplied.

A pointer to a set of difference approximation parameters for

the propagation function. [awb if L= 1 and awf if L=2] supplied
see NOTE.

See *aw, [fcwb ifL=l and fcwfifL=2], supplied see NOTE.

The difference model order for the propagation function.

[Myb if L= 1 and Myf if L=2] supplied.

The time step used during the analysis one transmission line

delay ago.
Tw = t(n-m) - t(n-m-1) see Fgure 2.

The delayed value of the excitation for the propagation function.
(2 * (V2(t-tau)* Yo2 - G2(t-tau)) + Is2(t-tau)) ifL=l
(2 * (Vl(t-tau)* Yol - Gl(t-tau)) + Isl(t-tau)) if L=2
tau = the line delay,
xw is found by second order interpolation involving the value of
xwe at t(n-m), t(n-m-1), t(n-m-2), where t(n-m) is the first time
point greater than t(n)-tau, xwe at a particular time looks just like
xw except the values of voltage and currents aren't taken from
t-tau but right at the present t.
xwe(t) = 2*(VL(t)*YoL - GL(t)) + ISL(t) where L = 1 or 2 as
appropriate, see Figure 2.

The value of xw calculated at the time step just before the present
one (xw at t(n-1) see Figure 2/

Part of the current source current that originated from the current source
in the frequency domain. This is a pointer the calling program passes
to G and uses in the calculation of xwe.

137

t(nim'2)

xwe

t(_n_)- tau

,(n]m-1) lt(n-m)vi "" t(n]l)

xwe xwe xy
xw

tq ,)

t

caIc xwe,

xw, and

Ty

I

Figure C.1. Time line illustrating history of arguments to G.

The following is a description of the labels in Figure C. 1:

t() This represents a time point where the argument inside is an index used to
refer to the time point. A time step is the difference between two
consecutive time points.

The index of the present time step, n = 0, 1, 2

tau The line delay.

t(n) The present time point at which the stamp is being used.
t(n- 1) The time point just before the present one.
t(n-m) The very first time point that is greater than t(n)-tau, m+2 < n.

t(n-m-1) The time point just preceding t(n-m).
t(n-m-2) The time point just preceding t(n-m-1).

NOTE: In the input file there is a list of these values. The values can be read into an

array or into memory accessed by a pointer. The subroutine requires the beginning

address. (see Input File section).

138

Contents of an Example Difference
Parameters File

This section contains a listing of the contents of the difference parameter file created

by the vdmdiff program. Inside the parameter file the specification for the line associated

with the parameters is given. The function vdmdiff is found in spice3e2/src/bin and was

written by D. Kuznetsov.

6
4.2409111e-02
4.3788458e-02
6.7126054e-02
6.2640246e-02
4.3410412e-02
4.2151584e-02
6.9847406e-01
6
4.2409111e-02
4.3788458e-02
6.7126054e-02
6.2640246e-02
4.3410412e-02
4.2151584e-02
6.9847406e-01
5
-3.5948372e-03
-6.1014303e-04
-1.8665157e-03
-1.2594786e-03
-1.1752701e-03
8.5062457e-03

5
-3.5948372e-03
-6.1014303e-04

-1.8665157e-03
-1.2594786e-03
-1.1752701e-03
8.5062457e-03

2.5867665e+07
1.3135440e+07
7.0383468e+06
2.5156424e+06
7.1643273e+05
8.4929645e+04
9.9999992e-01

2.5867665e+07
1.3135440e+07
7.0383468e+06
2.5156424e+06
7.1643273e+05
8.4929645e+04
9.9999992e-01

3.2832546e+07
1.7430986e+07
1.2688930e+07
3.8003358e+06
4.6826466e+05
8.9442719e-10

3.2832546e+07
1.7430986e+07
1.2688930e+07
3.8003358e+06
4.6826466e+05
8.9442719e-10

3.0947848e-09

3.0947848e-09

This file contains the Difference Approximation parameters for the line
propagation function and characteristic admittance.

The distributed line parameters are:
a.lin parameters file

1 = 6.7500000e-01 m, line length
L = 5.3900000e-07 H/m, distributed inductance

C = 3.9000000e-11 F/m, distributed capacitance
R = 1.2500000e+02 Ohm/m, distributed resistance

139

Rs = 0.0000000e+00 Ohm/(Hz)^l/2, skin resistance
G = 1.0000000e- 16 S/m, distributed conductance

The format of the file is:

Mwf order of the approx-tion for the forward propagation function;

awf[1] fcwf[1] I
I the Difference Approximation parameters
I for the forward propagation function;
I

awf[Mwf] fcwf[Mwf] I
Awf Bwf tauf fin. & init. val-s of forw. prop. func. and forw. prop. delay;

Mwb order of the approx-tion for the backward propagation function;
awb[1] fcwb[1] I

I the Difference Approximation parameters
I for the backward propagation function;
I

awl_[Mwb] fcwb[Mwb] I
Awb Bwb taub fin. & init. val-s of backw, prop. func. and backw, prop. delay;

My 1 order of the appr. for the near-end characteristic admittance;
ayl[1] fcyl[1] I

I the Difference Approximation parameters
I for the near-end characteristic admittance;

I

ayl[Myl] fcyl[Myl] I
Ay 1 By 1 finial and initial values of the near-end char. admitt.;

My2 order of the appr. for the far-end characteristic admittance;

ay2[1] fcyl[1] I
I the Difference Approximation parameters
I for the far-end characteristic admittance;

I

ay½[My2] fcy2[My2] I
Ay2 By2 finial and initial values of the far-end char. admitt.

C.3. Header Files

This section contains excerpts from the header files that are modified in converting

from the lossless model to the lossy model. The header files are found in the directory

spice3e2/src/include with the other SPICE3E2 headers.

C.3.1. Contents of ntradefs.h after modification

140

typedef struct sNTRAinstance {
struct sNTRAmodel *NTRAmodPtr; /* backpointer to model */
struct sNTRAinstance *NTRAnextlnstance; /* pointer to next instance of

* current model*/

IFuid NTRAname; /* pointer to character string naming this instance */

int NTRAposNode 1;
int NTRAnegNode 1;
int NTRAposNOde2;
int NTRAnegNOde2;

/* number of positive node of end 1 of t. line */
/* number of negative node of end 1 of t. line */
/* number of positive node of end 2 of t. line */
/* number of negative node of end 2 of t. line */

double
double
double
double
double

NTRAimped; /* impedance - input */
NTRAconduct; /* conductance - calculated */

NTRAtd; /* propagation delay */
NTRAnl; /* normalized length */
NTRAf; /* frequency at which nl is measured */

double
double
double
double

NTRAinput 1; /* accumulated excitation for port 1 */
NTRAinput2; /* accumulated excitation for port 2 */
NTRAinput l_old; /* prev val of accumulated excitation for port 1 */
NTRAinput2_old; /* prev val of accumulated excitation for port 2 */

double NTRAinitVolt 1;
double NTRAinitCurl;
double NTRAinitVolt2;
double NTRAinitCur2;
double NTRAreltol;
double NTRAabstol;

/* initial condition: voltage on port 1 */
/* initial condition: current at port 1 */
/* initial condition: voltage on port 2 */
/* initial condition: current at port 2 */

/* relative deriv, tol. for breakpoint setting */
/* absolute deriv, tol. for breakpoint setting */

double *NTRAdelays;
int NTRAsizeDelay;
int NTRAallocDelay;

/* delayed values of excitation */
/* size of active delayed table */
/* allocated size of delayed table */

double *NTRAibr lIbr 1Ptr;

double *NTRAibrlNeglPtr;
double *NTRAibrlPos 1Ptr;
double *NTRAibr2Ibr2Ptr;

double *NTRAibr2Neg2Ptr;
double *NTRAibr2Pos2Ptr;

/* pointer to sparse matrix */
/* pointer to sparse matrix */

/* pointer to sparse matrix */
/* pointer to sparse matrix */

/* pointer to sparse matrix */
/* pointer to sparse matrix */

double
double
double
double
double
double
double
double

/* FOR USE WITH STAMP FILLING */

NTRAposlPoslPtr; / pointer to sparse matrix */
* NTRApos 1Neg 1Ptr;
*NTRAneglPos 1Ptr;
*NTRAneglNeglPtr;
*NTRApos2Pos2Ptr;
*NTRApos2Neg2Ptr;
*NTRAneg2Pos2Ptr;
*NTRAneg2Neg2Ptr;

/* pointer to sparse matrix */
/* pointer to sparse matrix */
/* pointer to sparse matrix */

/* pointer to sparse matrix */
/* pointer to sparse matrix */
/* pointer to sparse matrix */
/* pointer to sparse matrix */

unsigned NTRAimpedGiven
unsigned NTRAtdGiven : 1;
unsigned NTRAnlGiven : 1;
unsigned NTRAfGiven : 1;

: 1;/* flag to indicate impedence was specified */
/* flag to indicate delay was specified */
/* flag to indicate norm length was specified */
/* flag to indicate freq was specified */

141

unsigned NTRAicV1Given : 1; /* flag to ind. init. voltage at port 1 given */
unsigned NTRAicC1Given : 1; /* flag to ind. init. current at port 1 given */
unsigned NTRAicV2Given : 1; /* flag to ind. init. voltage at port 2 given */
unsigned NTRAicC2Given : 1; /* flag to ind. init. current at port 2 given */
unsigned NTRAreltolGiven: 1; /* flag to ind. relative deriv, tol. given */
unsigned NTRAabstolGiven: 1; /* flag to ind. absolute deriv, tol. given */

double *awf;

double *fcwf;

double *awb;

double *fcwb;

double *ayl;

double *fcy 1;

double *ay2;

double *fcy2;
double Awf;

double Bwf;

double tauf;
double Awb;

double Bwb;
double taub;

double Ay 1;

double By 1;

double Ay2;

double By2;

I

/* Parameters used in difference model */

double Is 1;

double Is2;

double xwoldl;
double xwold2;

double oldtime;

int Mwf;

int Mwb;

int My 1;

int My2;

} NTRAinstance ;

142

C.3.2. Contents of ntraitf.h

SPICEdev NTRAinfo = {

{
"Ntranline",

I

["Loss_' transmission line", I

&NTRAnSize,

&NTRAnSize,
NTRAnames,

&NTRApTSize,

NTRApTable,

0/*&NTRAmPTSize,
NULL/*NTRAmPTable/**/,

},

C.4. NTRAparam

Excerpts from spice3e2/src/lib/dev/ntra/ntraparam.c, which contains the

NTRAparam function, are shown in this section. The listing is of NTRAparam after it has

been modified for lossy functionality.

int

NTRAparam(param,value,inst,select)

int param;
IFvalue *value;
GENinstance *inst;
IFvalue *select;

{
NTRAinstance *here = (NTRAinstance *)inst;

switch(param) {
case NTRA_RELTOL:

143

/*
*/

here->NTRAreltol = value->rValue;
here->NTRAreltolGiven = TRUE;
break;

case NTRA ABSTOL:

here->NTRAabstol = value->rValue;
here->NTRAabstolGiven = TRUE;
break;

case NTRA_Z0:

here->NTRAimped = value->rValue;

here->NTRAimpedGiven = TRUE;
break;

I

case NTRA_TD:

here->NTRAtd = value->rValue;

here->NTRAtdGiven = TRUE;
break;

case NTRA NL:
here->NTRAnl= value->rValue;
here->NTRAnlGiven = TRUE;
break;

C.5. NTRAsetup

Shown below are excerpts from spice3e2/srcflib/dev/ntra/ntrasetup.c, which is the

file that contains the NTRAsetup function. The modifications made to convert NTRAsetup

to a function of the lossy line module are shown in the boxes.

int

NTRAsetup(matrix,inModel,ckt,state)
register SMPmatrix *matrix;
GENmodel *inModel;

register CKTcircuit *ckt;
int *state;

/* load the transmission line structure with those pointers needed later
* for fast matrix loading
*/

FILE *data;

144

register NTRAmodel *model = (NTRAmodel *)inModel;
register NTRAinstance *here;
int error;

CKTnode *trap;

/* loop through all the transmission line models */
for(; model != NULL; model = model->NTRAnextModel) {

/* loop through all the instances of the model */
for (here = model->NTRAinstances; here != NULL ;

here=here->NTRAnextlnstance) {

/* Difference paraneters for lossy line being loaded */

here->Mwf ---6;

here->awf = (double *)MALLOC(here->Mwf*sizeof(double));

*(here->awf + 0) = 4.240911 le-02;

*(here->awf + 1) = 4.3788458e-02;

*(here->awf + 2) = 6.7126054e-02;

*(here->awf + 3) = 6.2640246e-02;

*(here->awf + 4) = 4.3410412e-02;

*(here->awf + 5) = 4.2151584e-02;
I

I

here->fcwf=(double)MALLOC(here->Mwf sizeof(double));

*(here->fcwf + 0) = 2.5867665e7;
*(here->fcwf+ 1)= 1.3135440e7;

*(here->fcwf + 2) = 7.0383468e6;

*(here->fcwf + 3) = 2.5156424e6;

*(here->fcwf + 4) = 7.1643273e5;

*(here->fcwf + 5) = 8.4929645e4;
here->Awf = 6.9847406e- 1;

here->Bwf = 9.9999992e- 1;

here->tauf = 3.0947848e-9;
I

145

here->Mwb = 6;

here->awb = (double *)MALLOC(here->Mwb*sizeof(double));

*(here->awb

*(here->awb

*(here->awb

*(here->awb

*(here->awb

*(here->awb

+ 0) = 4.240911 le-02;

+ 1) = 4.3788458e-02;
+ 2) = 6.7126054e-02;

+ 3) = 6.2640246e-02;

+ 4) = 4.3410412e-02;

+ 5) = 4.2151584e-02;

here->fcwb = (double *)MALLOC(here->Mwb*sizeof(double));

*(here->fcwb + 0) = 2.5867665e7;

*(here->fcwb + 1) = 1.3135440e7;

*(here->fcwb + 2) = 7.0383468e6;

*(here->fcwb + 3) = 2.5156424e6;

*(here->fcwb + 4) = 7.1643273e5;

*(here->fcwb + 5) = 8.4929645e4;
here->Awb = 6.9847406e-1;

here->Bwb = 9.9999992e- 1;

here->taub = 3.0947848e-9;

here->My 1 = 5;

here->ay 1 = (double *)MALLOC(here->My l*sizeof(double));

*(here->ay 1 + 0) = -3.5948372e-03;

*(here->ayl + 1) = -6.1014303e-04;

*(here->ay 1 + 2) = - 1.8665157e-03;

*(here->ay 1 + 3) = -1.2594786e-03;

*(here->ayl + 4) = -1.1752701e-03;

here->fcy 1 = (double *)MALLOC(here->My 1*sizeof(double));

*(here->fcy 1 + 0) = 3.2832546e7;

*(here->fcyl + 1)= 1.7430986e7;

*(here->fcyl + 2) = 1.2688930e7;
*(here->fcyl + 3) = 3.8003358e6;

*(here->fcy 1 + 4) = 4.6826466e5;

here->Ay 1 = 8.5062457e-03;

here->By I = 8.9442719e- 10;

here->My2 = 5;

here->ay2 = (double *)MALLOC(here->My2*sizeof(double));

*(here->ay2 + 0) = -3.5948372e-03;
*(here->ay2 + 1) = -6.1014303e-04;

*(here->ay2 + 2) = -1.8665157e-03;

*(here->ay2 + 3) = -1.2594786e-03;

*(here->ay2 + 4) = - 1.175270 le-03;

146

/*

here->fcy2 = (double *)MALLOC(here->My2*sizeof(double));

*(here->fcy2 + 0) = 3.2832546e7;
*(here->fcy2 + 1) = 1.7430986e7;

*(here->fcy2 + 2) = 1.2688930e7;
*(here->fcy2 + 3) = 3.8003358e6;

*(here->fcy2 + 4) = 4.6826466e5;

here->Ay2 = 8.5062457e-03;

here->By2 = 8.9442719e- 10;

*/

/* allocate the delay table */
here->NTRAdelays = (double *)MALLOC(15" sizeof(double));
here->NTRAallocDelay = 4;

/* macro to make elements with built in test for out of memory */

#define TSTALLOC(ptr,first,second) \
if((here->ptr = SMPmakeElt(matrix,here->first,here->second))==(double
*)NULL){\

retum(E_NOMEM);\
}

TSTALLOC(NTRApos 1Pos 1Ptr, NTRAposNode 1, NTRAposNode 1)
TSTALLOC(NTRApos 1Neg 1Ptr, NTRAposNode 1, NTRAnegNode 1)
TSTALLOC(NTRAneg 1Pos 1Ptr, NTRAnegNode 1, NTRAposNode 1)
TSTALLOC(NTRAneg 1Neg 1Ptr, NTRAnegNode 1, NTRAnegNode 1)

TSTALLOC(NTRApos2Pos2Ptr, NTRAposNode2, NTRAposNode2)

TSTALLOC(NTRApos2Neg2Ptr, NTRAposNode2, NTRAnegNode2)
TSTALLOC(NTRAneg2Pos2Ptr, NTRAnegNode2, NTRAposNode2)
TSTALLOC(NTRAneg2Neg2Ptr, NTRAnegNode2, NTRAnegNode2)

]*

*/

if(!here->NTRAnlGiven) {
here->NTRAnl = .25;

}
if(!here->NTRAfGiven) {

here->NTRAf = le9;

}
if(!here->NTRAreltolGiven) {

here->NTRAreltol = 1;

}
if(!here->NTRAabstolGiven) {

here->NTRAabstol - 1;

}
if(!here->NTRAimpedGiven) {

(*(SPfrontEnd->IFerror))(ERR_FATAL,
"%s: ntrans z0 must be given ->ntrasetup.c",

&(here->NTRAname));

retum(E_BADPARM);

}
if(!here->NTRAparamfileGiven) {

147

(*(SPfrontEnd->IFerror))(ERR_FATAL,
"%s: ntrans filename must be given ->ntrasetup.c",
&(here->NTRAname));

return(E_BADPARM);

}
}
return(OK);

}

C.6. NTRAIoad

Two excerpts are provided of the NTRAload function, found in

spice3e2/src/lib/dev/ntra/ntraload.c. The listing in Section C.6.1 shows the function before

modification and the sections of code that require modification to convert NTRAload to a

lossy line function. Section C.6.2 lists the modified version of NTRAIoad.

C.6.1. Contents of ntraload.c before modification

int

NTRAload(inModel,ckt)
GENmodel *inModel;
CKTcircuit *ckt;

/* actually load the current values into the
* sparse matrix previously provided
*/

/* Variables declared for inside the function */

register NTRAmodel *model = (NTRAmodel *)inModel;

register NTRAinstance *here;
double tl,t2,t3;

double fl,f2,f3;

register int i;

/* loop through all the NTRAnsmission line models */
for(; model != NULL; model = model->NTRAnextModel) {

/* loop through all the instances of the model */
for (here = model->NTRAinstances; here != NULL ;

148

here=here->NTRAnextInstance) {

/* MOST OF THE STAMP FILLED HERE */

* (here->NTRApos 1Pos 1Ptr) += here->NTRAconduct;

* (here->NTRApos 1Neg 1Ptr) -= here->NTRAconduct;

*(here->NTRAneg 1Pos 1Ptr) -= here->NTRAconduct;

*(here->NTRAneg 1NeglPtr) += here->NTRAconduct;

*(here->NTRApos2Pos2Ptr) += here->NTRAconduct;

*(here->NTRApos2Neg2Ptr) -= here->NTRAconduct;

*(here->NTRAneg2Pos2Ptr) -= here->NTRAconduct;

*(here->NTRAneg2Neg2Ptr) += here->NTRAconduct;

/* STAMP FILL FOR DC ANALYSIS */

/* This section is to be left commented out until the stamp fill for the transient
analysis

stamp filling and solving for the line is determined as functioning correctly.
Until then

use initial conditions specification from the input file. Once transient analysis is
working this section is the place to modify the stamp for DC analysis.

*/

if(ckt->CKTmode & MODEDC) {
/*

*/

*(here->NTRAibr 1Pos2Ptr) -= 1;
*(here->NTRAibrlNeg2Ptr) += 1;
*(here->NTRAibr llbr2Ptr) -= (1-ckt->CKTgmin)*here->NTRAimped;
*(here->NTRAibr2PoslPtr)-= 1;
*(here->NTRAibr2Neg 1Ptr) += 1;
*(here->NTRAibr2Ibr 1Ptr) -= (1-ckt->CKTgmin)*here->NTRAimped;

} else {
if (ckt->CKTmode & MODEIN1TI'RAN) {

/* THE INITIAL TRANSIENT RUN */

if(ckt->CKTmode & MODEUIC) {
/* USE THE INITIAL CONDITIONS SUPPLIED INSTEAD OF THE DC
ANALYSIS VALUES */

here->NTRAinput 1 = here->NTRAconduct*
here->NTRAinitVolt2 + here->NTRAinitCur2;

here->NTRAinput2 = here->NTRAconduct *
here->NTRAinitVoltl + here->NTRAinitCurl;

} else {
/* COMMENTED OUT TILL DEBUGGING FINISHED */
/* USES THE DC VALUES AS START */
/*

here->NTRAinputl = here->NTRAinput2Old
+ here->NTRAconduct * (*(ckt->CKTrhsOld

149

+ here->NTRAposNode2) - *(ckt->CKTrhsOld
+ here->NTRAnegNode2));

here->NTRAinput2 = here->NTRAinput 1Old
+ here->NTRAconduct * (*(ckt->CKTrhsOld

+ here->NTRAposNode 1) - *(ckt->CKTrhsOld
+ here->NTRAnegNode 1));

*/

/* SET UP THE DELAY TABLE */

*(here->NTRAdelays) = -2*here->NTRAtd;
*(here->NTRAdelays +3) = -here->NTRAtd;
*(here->NTRAdelays+6) = 0;

*(here->NTRAdelays+l) = *(here->NTRAdelays 44) =
*(here->NTRAdelays+7) = here->NTRAinput 1;

*(here->NTRAdelays+2) = *(here->NTRAdelays +5) =

*(here->NTRAdelays+8) = here->NTRAinput2;
here->NTRAsizeDelay = 2;

} else {

/* FIND INTERPOLATED VALUES */

if(ckt->CKTmode & MODEINITPRED) {

for(i=2;(i<here->NTRAsizeDelay) &&
(*(here->NTRAdelays +3"i) <=
(ckt->CKTtime-here->NTRAtd));i++) {;/*loop does it*/}

tl = *(here->NTRAdelays + (3"(i-2)));
t2 = *(here->NTRAdelays + (3"(i- 1)));
t3 = *(here->NTRAdelays + (3"(i)));

if((t2-tl)==0 II (t3-t2) == 0) continue;
fl = (ckt->CKTtime - here->NTRAtd - t2) *

(ckt->CKTtime - here->NTRAtd - t3) ;
f2 = (ckt->CKTtime - here->NTRAtd - tl) *

(ckt->CKTtime - here->NTRAtd - t3) ;
f3 = (ckt->CKTtime - here->NTRAtd - tl) *

(ckt->CKTtime - here->NTRAtd - t2) ;
if((t2-tl)==0) {/* should never happen, but don't want

• to divide by zero, EVER... */
fl=0;
f2=0;

} else {
fl/= (tl-t2);
f2/= (t2-tl);

if((t3-t2)==0) {/* should never happen, but don't want
• to divide by zero, EVER... */

f2=0;
f3=0;

150

} else {
f2/= (t2-t3);
f3/= (t2-t3);

)
if((t3-tl)==0) {/* should never happen, but don't want

* to divide by zero, EVER... */
fl=0;
f2=0;

} else {
fl/= (tl-t3);
t3/= (tl-t3);

I

here->NTRAinputl = fl * *(here->NTRAdelays + (3"(i-2))+1)
+ t"2 * *(here->NTRAdelays + (3"(i- 1))+ 1)

+ f3 * *(here->NTRAdelays + (3"(i))+1);

here->NTRAinput2 = fl * *(here->NTRAdelays + (3"(i-2))+2)
+ f2 * *(here->NTRAdelays + (3"(i-1))+2)

+ f3 * *(here->NTRAdelays + (3"(i))+2);

}
}

/* FILL THE RIGHT HAND SIDE */

*(ckt->CKTrhs + here->NTRAposNode 1) += here->NTRAinputl;
*(ckt->CKTrhs + here->NTRAnegNodel) -= here->NTRAinput 1;
*(ckt->CKTrhs + here->NTRAposNode2) += here->NTRAinput2;
*(ckt->CKTrhs + here->NTRAnegNode2) -= here->NTRAinput2;
here->NTRAinput 1Old = here->NTRAinput 1;
here->NTRAinput2Old = here->NTRAinput2;

}
}

}
return(OK);

)

C.6.2. Contents of ntraload.c after modification

int

NTRAload(inModel,ckt)
GENmodel *inModel;
CKTcircuit *ckt;

/* actually load the current values into the
* sparse matrix previously provided

151

*/

{
/* Variables declared for inside the function */

register NTRAmodel *model = (NTRAmodel *)inModel;
register NTRAinstance *here;
double t 1,t2,t3;
double fl,f2,f3;

register int i;

/* extra vars */

int L;
double xwl, xw2;

double Ty;
double delay;
double xyold;
double Tw;
double xw;
double xwold;
double zero;

/****************/

/* loop through all the NTRAnsmission line models */
for(; model != NULL; model = model->NTRAnextModel) {

/* loop through all the instances of the model */
for (here = model->NTRAinstances; here != NULL ;

here=here->NTRAnextlnstance) {

/* MOST OF THE STAMP FILLED HERE */

*(here->NTRApos 1Pos 1Ptr) += here->Ay 1;
* (here->NTRApos 1Neg 1Ptr) -= here->Ay I;
* (here->NTRAneg 1Pos 1Ptr) -= here->Ay 1;
*(here->NTRAneg 1Neg 1Ptr) += here->Ay 1;

*(here->NTRApos2Pos2Ptr) += here->Ay 1;
*(here->NTRApos2Neg2Ptr) -= here->Ay 1;
*(here->NTRAneg2Pos2Ptr) -= here->Ay 1;
*(here->NTRAneg2Neg2Ptr) += here->Ayl;

/* STAMP FILL FOR DC ANALYSIS */

if(ckt->CKTmode & MODEDC) {
/* *(here->NTRAibrl Pos2Ptr) -= 1; */
/* *(here->NTRAibrlNeg2Ptr) += 1; */
/* *(here->NTRAibr llbr2Ptr) -= (1-ckt->CKTgmin)*here-
>NTRAimped;*/
/* *(here->NTRAibr2PoslPtr) -= 1; */
/* *(here->NTRAibr2NeglPtr) += 1; */
/* *(here->NTRAibr2Ibr 1Ptr) -= (1-ckt->CKTgmin)*here-

>NTRAimped;*/
} else {

/* NOT DOING A DC ANALYSIS MATRIX FILL */

if (ckt->CKTmode & MODEINITTRAN) {
/* THE INITIAL TRANSIENT RUN */

152

if(ckt->CKTmode & MODEUIC) {
/* USE THE INITIAL CONDITIONS SUPPLIED INSTEAD OF THE DC
ANALYSIS VALUES */

xw 1 = here->Ay2* here->NTRAinitVolt2
+ here->NTRAinitCur2;

xwold = xw 1;

here->NTRAinput 1 = G(1,here->ay 1,here->fcy 1,here->My 1,
ckt->C KTtime,here->NTRAinitVolt 1,here->Awb,
here->awb,here->fcwb,here->Mwb,ckt->CKTtime,xw 1,

xwold,&(here->Is 1));

here->xwold 1 = xw 1;

xw2 = here->Ay 1 * here->NTRAinitVolt 1
+ here->NTRAinitCur 1;

xwold = xw2;

here->NTRAinput2 = G(2,here->ay2,here->fcy2,here->My2,
ckt->CKTtime,here->NTRAinitVolt2,here->Awf,
here->awf, here->fcwf, here->Mwf, ckt->CKTtime,xw2,
xwold,&(here->Is2));

here->xwold2 = xw2;

} else {
/* COMMENTED OUT TILL DEBUGGING FINISHED */
/* USE THE DC VALUES AS START */
/*

here->NTRAinputl = *(ckt->CKTrhsOld + here->NTRAbrEq2)
+ here->NTRAconduct * (*(ckt->CKTrhsOld

+ here->NTRAposNode2) - *(ckt->CKTrhsOld
+ here->NTRAnegNode2));

here->NTRAinput2 = *(ckt->CKTrhsOld + here->NTRAbrEq 1)
+ here->NTRAconduct * (*(ckt->CKTrhsOld
+ here->NTRAposNode 1) - *(ckt->CKTrhsOld
+ here->NTRAnegNode 1));

*/

/* SET UP THE DELAY TABLE */
*(here->NTRAdelays) = -2*here->NTRAtd;
*(here->NTRAdelays +3) = -here->NTRAtd;
*(here->NTRAdelays+6) = 0;
*(here->NTRAdelays+ 1) = *(here->NTRAdelays +4) =

*(here->NTRAdelays+7) = here->NTRAinput 1;

153

*(here->NTRAdelays+2) = *(here->NTRAdelays +5) =
*(here->NTRAdelays+8) = here->NTRAinput2;

here->NTRAsizeDelay = 2;

} else {

/* FIND INTERPOLATED VALUES */

if(ckt->CKTmode & MODEINITPRED) {

for(i=2 ;(i<here->NTRAsizeDelay) &&
(*(here->NTRAdelays +3"i) <=
(ckt->CKTtime-here->NTRAtd));i++) {;/*loop does it*/}

tl = *(here->NTRAdelays + (3"(i-2)));
t2 = *(here->NTRAdelays + (3"(i-1)));
t3 = *(here->NTRAdelays + (3"(i)));
if((t2-tl)==0 II (t3-t2) == 0) continue;
fl = (ckt->CKTtime - here->NTRAtd - t2) *

(ckt->CKTtime - here->NTRAtd - t3) ;
f2 = (ckt->CKTtime - here->NTRAtd - tl) *

(ckt->CKTtime - here->NTRAtd - t3) ;
f3 = (ckt->CKTtime - here->NTRAtd - tl) *

(ckt->CKTtime - here->NTRAtd - t2) ;
if((t2-tl)==0) {/* should never happen, but don't want

• to divide by zero, EVER... */
fl=0;
f2=0;

} else {
fl/= (tl-t2);
f2/= (t2-tl);

}
if((t3-t2)==0) {/* should never happen, but don't want

• to divide by zero, EVER... */
f2-0;
13=0;

} else {
f2/= (t2-t3);
t3/= (t2-t3);

}
if((t3-t 1)==0) {/* should never happen, but don't want

• to divide by zero, EVER... */
fl =0;
f2=0;

} else {
fl/= (tl-t3);
13/= (tl-t3);

}

xwl -- fl * *(here->NTRAdelays + (3"(i-2))+1)
+ f2 * *(here->NTRAdelays + (3"(i-1))+1)

+ 13 * *(here->NTRAdelays + (3"(i))+1),

Ty = ckt->CKTtime - here->oldtime;

154

Tw = t3 - t2;

xyold = *(ckt->CKTrhsOld + here->NTRAposNode 1)
- *(ckt->CKTrhsOld + here->NTRAnegNode 1);

here->NTRAinput 1 = G(1,here->ay 1,here->fcy 1,here->My I,
Ty,xyold,here->Awb,here->awb,here->fcwb,
here->Mwb,Tw,xwl,here->xwoldl,&(here->Is 1));

here->xwold 1 = xw 1;

xw2 = fl * *(here->NTRAdelays + (3"(i-2))+2)
+ f2 * *(here->NTRAdelays + (3"(i-1))+2)
+ f3 * *(here->NTRAdelays + (3"(i))+2);

xyold = *(ckt->CKTrhsOld + here->NTRAposNode2)
- *(ckt->CKTrhsOld + here->NTRAnegNode2);

here->NTRAinput2 = G(2,here->ay2,here->fcy2,here->My2,
Ty,xyold,here->Awf, here->awf, here->fcwf,
here->Mwf, Tw,xw2,here->xwold2,&(here->Is2));

here->xwold2 = xw2;

}
}

/* FILL THE RIGHT HAND SIDE */
here->oldtime = ckt->CKTtime;
*(ckt->CKTrhs + here->NTRAposNode 1) += here->NTRAinput 1;
*(ckt->CKTrhs + here->NTRAnegNode 1) -= here->NTRAinputl;
*(ckt->CKTrhs + here->NTRAposNode2) += here->NTRAinput2;
*(ckt->CKTrhs + here->NTRAnegNode2) -= here->NTRAinput2;

}
}

)
return(OK);

}

C.7. NTRAacct

The following two subsections contain excerpts from

spice3e2/src/lib/dev/ntra/ntraacct.c of the function NTRAacct. The first subsection shows a

listing before conversion to a function of the lossy package with code to be modified boxed

in. The second section shows the modified version.

155

C.7.1. Contents of ntraacct.c before modification

int

NTRAaccept(ckt,inModel)
register CKTcircuit *ckt;
GENmodel *inModel;

register NTRAmodel *model = (NTRAmodel *)inModel;
register NTRAinstance *here;

/* Inserting data into table */
to = (here->NTRAdelays
*to = ckt->CKTtime;

+3*here->NTRAsizeDelay);

to = (here->NTRAdelays+l +3*here->NTRAsizeDelay);
*to = 2*here->NTRAconduct * (*(ckt->CKTrhsOld +

here->NTRAposNode2) - *(ckt->CKTrhsOld +

here->NTRAnegNode2)) - here->NTRAinput2;

to = (here->NTRAdelays+2+3*here->NTRAsizeDelay);

*to = 2*here->NTRAconduct * (*(ckt->CKTrhsOld +

here->NTRAposNodel) - *(ckt->CKTrhsOld +

here->NTRAnegNode 1)) - here->NTRAinput 1;

C.7.2. Contents of ntraacct.c after modification

mt

NTRAaccept(ckt,inModel)
register CKTcircuit *ckt;
GENmodel *inModel;

register NTRAmodel *model = (NTRAmodel *)inModel;
register NTRAinstance *here;

156

/* Inserting data into table */
to = (here->NTRAdelays
*to = ckt->CKTtime;

+3 *here->NTRAsizeDelay);

to = (here->NTRAdelays+l+3*here->NTRAsizeDelay);

to = 2(here->Ay2 * (*(ckt->CKTrhsOld + here->NTRAposNode2) -

*(ckt->CKTrhsOld + here->NTRAnegNode2)) - here->NTRAinput2) + here-
>Is2;

to = (here->NTRAdelays+2+3*here->NTRAsizeDelay);

*to = 2" (here->Ay 1 * (*(ckt->CKTrhsOld + here->NTRAposNode 1) -
*(ckt->CKTrhsOld + here->NTRAnegNode 1)) - here->NTRAinput 1) + here-
>Is 1;

C.8. NTRAtrunc

This section contains excerpts from the NTRAtrunc function found in

spice3e2/src/lib/dev/ntra/ntratrunc.c. The first section contains the listing of NTRAtrunc as

a lossless line function and the second section contains the listing of NTRAtrunc as a lossy

line function.

C.8.1. Contents of ntratrunc.c before modification

int
NTRAtrunc(inModel,ckt,timeStep)

GENmodel *inModel;

register CKTcircuit *ckt;
double *timeStep;

register NTRAmodel *model = (NTRAmodel *)inModel;
register NTRAinstance *here;
double v 1,v2,v3,v4;
double v5,v6,d 1,d2,d3,d4;

double tmp;

157

/* loop through all the NTRAnsmission line models */
for(; model != NULL; model = model->NTRAnextModel) {

/* loop through all the instances of the model */
for (here = model->NTRAinstances; here != NULL ;

here=here->NTRAnextlnstance) {

v 1 = (*(ckt->CKTrhsOld + here->NTRAposNode2)]

- *(ckt->CKTrhsOld + here->NTRAnegNode2)) I+ here->NTRAinput2 * here->NTRAimped;

v2 = *(here->NTRAdelays+l+3*(here->NTRAsizeDelay));
v3 = *(here->NTRAdelays+ 1+3*(here->NTRAsizeDelay- 1));

v4 = (*(ckt->CKTrhsOld + here->NTRAposNode 1)

- *(ckt->CKTrhsOld + here->NTRAnegNode 1))

+ here->NTRAinput 1 * here->NTRAimped i

v5 = *(here->NTRAdelays+2+3*(here->NTRAsizeDelay));
v6 = *(here->NTRAdelays+2+3*(here->NTRAsizeDelay-1));
d 1 = (v 1-v2)/ckt->CKTdeltaOld[1];
d2 = (v2-v3)/ckt->CKTdeltaOld[2];
d3 = (v4-v5)/ckt->CKTdeltaOld[1];
d4 = (v5-v6)/ckt->CKTdeltaOld[2];

C.8.2. Contents of ntratrunc.c after modification

int

NTRAtrunc(inModel,ckt,timeStep)
GENmodel *inModel;

register CKTcircuit *ckt;
double *timeStep;

register NTRAmodel *model = (NTRAmodel *)inModel;
register NTRAinstance *here;
double v 1,v2,v3,v4;
double v5,v6,dl,d2,d3,d4;

double tmp;

/* loop through all the NTRAnsmission line models */
for(; model != NULL; model = model->NTRAnextModel) {

/* loop through all the instances of the model */
for (here = model->NTRAinstances; here != NULL ;

here=here->NTRAnextlnstance) {
vl = 2*(here->Ay2 * (*(ckt->CKTrhsOld + here->NTRAposNode2)

158

- *(ckt->CKTrhsOld + here->NTRAnegNode2)) -
here->NTRAinput2) + here->Is2;

v2 = *(here->NTRAdelays+l+3*(here->NTRAsizeDelay));
v3 = *(here->NTRAdelays+l+3*(here->NTRAsizeDelay-1));
v4 = 2*(here->Ay 1 * (*(ckt->CKTrhsOld + here->NTRAposNode 1)

- *(ckt->CKTrhsOld + here->NTRAnegNode 1)) -
here->NTRAinput 1) + here->Is 1;

v5 = *(here->NTRAdelays+2+3*(here->NTRAsizeDelay));
v6 = *(here->NTRAdelays+2+3*(here->NTRAsizeDelay- 1));

C.9. Listing of the Function fileread

The function fileread is found in spice3e2/src/lib/dev/ntra/fileread.c and the function

reads in parameters from the file of difference parameters and sets the appropriate fields of

the device specific data structures.

/*
******* ->>>>>>>> IMPORTANT <<<<<<<< ********

LATER change all exits to returns for cleaner exiting of the program
i.e., let SPICE handle the fact that the simulation can not proceed.

*/

int fileread(NTRAinstance *here) {
FILE *data;
int i;
double test;

if ((data = fopen(here->NTRAfileName, "r")) == NULL) {
printf("***ERROR: ftleread: could not access the difference parameters f'fle

-exiting...inin");
return (0);

}

fscanf (data, "%d", &(here->Mwf));
if (!(here->awf= malloc((here->Mwf)*sizeof(double)))) {

printf ("Out of memory.in");
exit(l);

}
if (!(here->fcwf= malloc((here->Mwf)*sizeof(double)))) {

printf ("Out of memory.in");
exit(l);

159

}
for(i=0; i< here->Mwf; ++i) {

fscanf(data, "%le %le",(here->awf)+i,(here->fcwf)+i);

}

fscanf(data, "%le %le %le", &(here->Awf), &(here->Bwf), &(here->tauf)) ;

fscanf(data, "%d", &(here->Mwb));
if (!(here->awb= malloc((here->Mwb)*sizeof(double)))) {

printf ("Out of memory.kn");
exit(l);

if (!(here->fcwb= malloc((here->Mwb)*sizeof(double)))) {
printf ("Out of memory&n");
exit(l);

for(i=0; i< here->Mwb; ++i) {
fscanf(data, "%le %le",(here->awb)+i,(here->fcwb)+i);

fscanf(data, "%le %le %le", &(here->Awb), &(here->Bwb), &(here->taub)

);

fscanf(data, "%d", &(here->My 1));

if (!(here->ayl= malloc((here->Myl)*sizeof(double)))) {
printf ("Out of memory.kn");
exit(l);

if (!(here->fcyl= malloc((here->My 1)*sizeof(double)))) {
printf ("Out of memory.kn");
exit(l);

for(i=0;i< here->My 1 ;++i) {
fscanf(data, "%le %le",(here->ayl)+i,(here->fcyl)+i);

fscanf(data, "%le %le", &(here->Ay 1), &(here->By 1));

fscanf(data, "%d", &(here->My2));
if (!(here->ay2= malloc((here->My2)*sizeof(double)))) {

printf ("Out of memory._");
exit(l);

if (!(here->fcy2= malloc((here->My2)*sizeof(double)))) {
printf C Out of memory._");
exit(1);

for(i=0; i< here->My2; ++i) {
fscanf(data, "%le %le",(here->ay2)+i,(here->fcy2)+i);

fscanf(data, "%le %le", &(here->Ay2), &(here->By2));
return(1);

160

C.10. IFparm Table

This section contains excerpts from the file spice3e2/src/lib/dev/ntra/ntra.c. The file

ntra.c contains the interface parameter table. The following listing shows the parameter

table after modification.

iFparm NTRApTable[] = {/* parameters */
IOP("z0", NTRA_Z0, IF_REAL , "Characteristic impedance"),

"zo", NTRA_Z0, IF_REAL , "Characteristic impedance"),
"f", NTRA_FREQ, IF_REAL , "Frequency"),

IOP(
IOP(
IOP("td", NTRA_TD, IF_REAL
IOP("nl", NTRA_NL, IF_REAL
IOP("vl", NTRA_V1, IF_REAL
IOP("v2", NTRA_V2, IF_REAL
IOP("il", NTRA_I1, IF_REAL
IOP("i2", NTRA_I2, IF_REAL

, "Transmission delay"),
, "Normalized length at frequency given"),
, "Initial voltage at end 1"),
, "Initial voltage at end 2"),

, "Initial current at end 1"),
, "Initial current at end 2"),

I IOP("filename", NTRA_PARAM_FILE_NAME, IF_STRING, I"Line parameter file name"),

IPCic", NTRA_IC, IF_REALVEC,"Initial condition vector:vl,i 1,v2,i2"),
OP("rel", NTRA_RELTOL, IF_REAL , "Rel. rate of change of deriv, for

bkpt"),
OP("abs", NTRA_ABSTOL, IF_REAL , "Abs. rate of change of deriv, for

bkpt"),
OP("pos_node 1", NTRA_POS_NODEI,IF_INTEGER,"Positive node of end 1

of t. line"),
OP("neg_nodel", NTRA_NEG_NODEI,IF_INTEGER,"Negative node of end 1

of t. line"),
OP("pos_node2", NTRA_POS_NODE2,IF_INTEGER,"Positive node of end 2

of t. line"),
OP("neg_node2", NTRA_NEG_NODE2,IF_INTEGER,"Negative node of end 2

of t. line"),
OP("delays",NTRA_DELAY, IF_REALVEC, "Delayed values of excitation")

};

/*static IFparm NTRAmPTable[] = {/* model parameters */
/* };/**/

char *NTRAnames[] = {
"PI+",
"PI-",
"P2+",
"P2-"

};

int

int

NTRAnSize = NUMELEMS(NTRAnames);

NTRApTSize = NUMELEMS(NTRApTable);

161

int
int
int

NTRAmPTSize = 0;
NTRAiSize = sizeof(NTRAinstance);
NTRAmSize = sizeof(NTRAmodel);

C.11.NTRAparam

This section lists an excerpt from spice3e2/src/li/dev/ntra/ntraparam.c which

contains the NTRAparam function. The listing shows the modified version of

NTRAparam, making it a part of the lossy line package.

/* ARGSUSED */
int

NTRAparam(param,value,inst,select)
int param;
IFvalue *value;
GENinstance *inst;
IFvalue *select;

NTRAinstance *here = (NTRAinstance *)inst;

switch(param) {
case NTRA_RELTOL:

here->NTRAreltol = value->rValue;
here->NTRAreltolGiven = TRUE;
break;

case NTRA_ABSTOL:
here->NTRAabstol = value->rValue;
here->NTRAabstolGiven = TRUE;
break;

/*

*/

case NTRA_Z0:
here->NTRAimped = value->rValue;

here->NTRAimpedGiven = TRUE;
break;

162

case NTRA_PARAM_FILE NAME:

here->NTRAfileName = value->sValue;
if (fileread(here)) {

here->NTRAparamf'deGiven = TRUE;
here->NTRAtd = here->tauf; /* tauf = taub */
here->NTRAtdGiven = TRUE;

break;

163

APPENDIX D.
FUTURE CODE MODIFICATIONS

This appendix contains listings of source code which is discussed in Chapter 9.

The code is as yet unimplemented and is only an example of the types of modifications

which can be made to SPICE3E2 in order to make the program more easy to maintain and

modify.

D.1. Complete listing of NTRAIoad

The following is a complete listing of the function NTRAload found in

spice3e2/src/lib/ntralaod.c, except for the exclusion of diagnostic print statements and the

copyright notice.

]*

*/

#include "spice.h"
#include <stdio.h>
#include "util.h"
#include "cktdefs.h"
#include "ntradefs.h"
#include "trandefs.h"

#include "sperror.h"
#include "suffix.h"
#include "vdmmodel.h"

#define HMAX 1.0e- 10

/*ARGSUSED*/
int

NTRAload(inModel,ckt)
GENmodel *inModel;
CKTcircuit *ckt;

/* actually load the current values into the
* sparse matrix previously provided
*/

{

164

/* Variables declared for inside the function */

register NTRAmodel *model = (NTRAmodel *)inModel;
register NTRAinstance *here;
double t 1,t2,t3;
double fl,f2,f3;

register int i;

/* extra vars */

int L;
double xwl, xw2;

double Ty;
double delay;
double xyold;
double Tw;
double xw;
double xwold;
double zero;

/****************/

/* loop through all the NTRAnsmission line models */
for(; model != NULL; model = model->NTRAnextModel) {

/* loop through all the instances of the model */
for (here = model->NTRAinstances; here != NULL ;

here=here->NTRAnextInstance) {

/* MOST OF THE STAMP FILLED HERE */

*(here->NTRApos 1Pos 1Ptr) += here->Ay 1;
*(here->NTRApos 1Neg 1Ptr) -= here->Ay 1;
*(here->NTRAneg 1Pos 1Ptr) -= here->Ay 1;
*(here->NTRAneg 1Neg 1Ptr) += here->Ay 1;

*(here->NTRApos2Pos2Ptr) += here->Ay 1;
*(here->NTRApos2Neg2Ptr) -= here->Ay 1;
*(here->NTRAneg2Pos2Ptr) -'= here->Ay 1;
*(here->NTRAneg2Neg2Ptr) += here->Ay 1;

/* STAMP FILL FOR DC ANALYSIS */

if(ckt->CKTmode & MODEDC) {
/* *(here->NTRAibrlPos2Ptr)-= 1; */

/* *(here->NTRAibrlNeg2Ptr) += 1; */
/* *(here->NTRAibr 11br2Ptr) -= (1-ckt->CKTgmin)*here-
>NTRAimped;*/
/* *(here->NTRAibr2PoslPtr)-= 1; */

/* *(here->NTRAibr2Neg 1Ptr) += 1; */
/* * (here->NTRAibr2Ibr 1Ptr) -= (1-ckt->CKTgmin)*

here->NTRAimped;*/
} else {

/* NOT DOING A DC ANALYSIS MATRIX FILL */

if (ckt->CKTmode & MODEINITTRAN) {
/* THE INITIAL TRANSIENT RUN */

if(ckt->CKTmode & MODEUIC) {

165

/* USE THE INITIAL CONDITIONS SUPPLIED INSTEAD OF THE DC

ANALYSIS VALUES */

xw 1 = here->Ay2* here->NTRAinitVolt2
+ here->NTRAinitCur2;

xwold = xw 1;

here->NTRAinput 1 = G(1,here->ay 1,here->fcy 1,here->My 1,
ckt->CKTtime,here->NTRAinitVolt 1,here->Awb,
here->awb,here->fcwb,here->Mwb,ckt->CKTtime,xw 1,

xwold,&(here->Is 1));
here->xwold 1 = xw 1;

xw2 = here->Ay 1 * here->NTRAinitVoltl
+ here->NTRAinitCur 1;

xwold = xw2;

here->NTRAinput2 = G(2,here->ay2,here->fcy2,here->My2,
ckt->CKTtime,here->NTRAinitVolt2,here->Awf,
here->awf, here->fcwf, here->Mwf,ckt->CKTtime,xw2,

xwold,&(here->Is2));
here->xwold2 = xw2;

} else {
/* COMMENTED OUT TILL DEBUGGING FINISHED */
/* USE THE DC VALUES AS START */
/*

here->NTRAinputl = *(ckt->CKTrhsOld + here->NTRAbrEq2)
+ here->NTRAconduct * (*(ckt->CKTrhsOld

+ here->NTRAposNode2) - *(ckt->CKTrhsOld
+ here->NTRAnegNode2));

here->NTRAinput2 = *(ckt->CKTrhsOld + here->NTRAbrEq 1)
+ here->NTRAconduct * (*(ckt->CKTrhsOld

+ here->NTRAposNode I) - *(ckt->CKTrhsOld
+ here->NTRAnegNode 1));

*/

/* SET UP THE DELAY TABLE */

*(here->NTRAdelays) = -2*here->NTRAtd;
*(here->NTRAdelays +3) = -here->NTRAtd;
*(here->NTRAdelays+6) = 0;
*(here->NTRAdelays+ 1) = *(here->NTRAdelays +4) =

*(here->NTRAdelays+7) = here->NTRAinputl;
*(here->NTRAdelays+2) = *(here->NTRAdelays +5) =

*(here->NTRAdelays+8) = here->NTRAinput2;

here->NTRAsizeDelay = 2;

166

} else {

/* FIND INTERPOLATED VALUES */

if(ckt->CKTmode & MODEINITPRED) {
for(i=2;(i<here->NTRAsizeDelay) &&

(*(here->NTRAdelays +3"i) <=
(ckt->CKTtime-here->NTRAtd));i++) {;/*loop does it*/}

tl = *(here->NTRAdelays + (3"(i-2)));
t2 = *(here->NTRAdelays + (3"(i- 1)));
t3 = *(here->NTRAdelays + (3"(i)));
if((t2-tl)==0 II(t3-t2) == 0) continue;
fl = (ckt->CKTtime - here->NTRAtd - t2) *

(ckt->CKTtime - here->NTRAtd - t3) ;
f2 = (ckt->CKTtime - here->NTRAtd - tl) *

(ckt->CKTtime - here->NTRAtd - t3) ;
t3 = (ckt->CKTtime - here->NTRAtd - tl) *

(ckt->CKTtime - here->NTRAtd - t2) ;
if((t2-t 1)==0) {/* should never happen, but don't want

• to divide by zero, EVER... */
fl =0;
f2=0;

} else {
fl/= (tl-t2);
f2/= (t2-tl);

}
if((t3-t2)==0) {/* should never happen, but don't want

• to divide by zero, EVER... */
f2=0;
f3---O;

} else {
f2/= (t2-t3);
13/= (t2-t3);

}
if((t3-tl)==0) {/* should never happen, but don't want

• to divide by zero, EVER... */
fl=0;
f2=0;

} else {
fl/= (tl-t3);
13/= (tl-t3);

xwl = fl * *(here->NTRAdelays + (3"(i-2))+1)
+ f2 * *(here->NTRAdelays + (3"(i-1))+1)
+ f3 * *(here->NTRAdelays + (3"(i))+1);

Ty = ckt->CKTtime - here->oldtime;
Tw - t3 - t2;

xyold = *(ckt->CKTrhsOld + here->NTRAposNode 1)
- *(ckt->CKTrhsOld + here->NTRAnegNode 1);

here->NTRAinput 1 = G(1,here->ay 1,here->fcy 1,here->My 1,

Ty,xyold,here->Awb,here->awb,here->fcwb,

167

here->Mwb,Tw,xw 1,here->xwold 1,&(here->Is 1));
here->xwoldl = xw 1;

xw2 = fl * *(here->NTRAdelays + (3"(i-2))+2)
+ f2 * *(here->NTRAdelays + (3"(i-1))+2)
+ f3 * *(here->NTRAdelays + (3"(i))+2);

xyold = *(ckt->CKTrhsOld + here->NTRAposNode2)
- *(ckt->CKTrhsOld + here->NTRAnegNode2);

here->NTRAinput2 = G(2,here->ay2,here->fcy2,here->My2,
Ty,xyold,here->Awf, here->aw f, here->fcwf,
here->Mwf, Tw,xw2,here->xwold2,&(here->Is2));
here->xwold2 = xw2;

}
}

/* FILL THE RIGHT HAND SIDE */

here->oldtime = ckt->CKTtime;
* (ckt->CKTrhs + here->NTRAposNode 1) += here->NTRAinput 1;
*(ckt->CKTrhs + here->NTRAnegNode 1) -= here->NTRAinput 1;
*(ckt->CKTrhs + here->NTRAposNode2) += here->NTRAinput2;
*(ckt->CKTrhs + here->NTRAnegNode2) -= here->NTRAinput2;

}
}

}
return(OK);

}

D.2. Modified NTRAIoad

The following listing is of a modified and as yet unimplemented version of the

NTRAload function.

#include "ntraload.h"

int

NTRAload(inModel,ckt)
GENmodel *inModel;
CKTcircuit *ckt;

/* actually load the current values into the
* sparse matrix previously provided
*/

{
/* Variables declared for inside the function */

register NTRAmodel *model = (NTRAmodel *)inModel;

168

register NTRAinstance *here;

/* loop through all the NTRAnsmission line models */

for(; model != NULL; model = model->NTRAnextModel) {

/* loop through all the instances of the model */
for (here = model->NTRAinstances; here != NULL ;

here=here->NTRAnextlnstance) {

/* MOST OF THE STAMP FILLED HERE */

NTRAloadLHS(here);

)
}
return(OK);

if(ckt->CKTgetMode() == SPICE_DC) {
/* STAMP FILL FOR DC ANALYSIS */

NTRAdcLoad(here);

} else {
/* NOT DOING A DC ANALYSIS MATRIX FILL */

if (ckt->CKTgetMode() == SPICE_INITTRAN) {
/* THE INITIAL TRANSIENT RUN */

if(ckt->CKTgetMode() == SPICE_UIC) {
/* USE THE INITIAL CONDITIONS
SUPPLIED INSTEAD OF THE DC
ANALYSIS VALUES */

NTRAIoadUIC(here);

} else {
/* USE THE DC VALUES AS A START */

NTRAloadUDC(here);

/* SET UP THE DELAY TABLE */

NTRAinitDelTab(here);

} else {
/* LOAD THE SOURCE VALUES */

NTRAcalcRHS(here);

}

/* FILL THE RIGHT HAND SIDE */

NTRAloadRHS(here);

169

D.3. NTRAcalcRHS

The following listing is of a function called NTRAcalcRHS. The function is not yet

implemented.

#include "ntracalcrhs.h"

void NTRAcalcRHS(NTRAinstance *here) {

here->NTRAxw 1 = NTRAgetInterpExcit 1();

here->NTRAxyold = ckt->CKTgetSol(here->NTRAposNode 1)
- ckt->CKTgetSol(here->NTRAnegNode 1);

here->NTRAinput 1 = G(l, here);
here->NTRAxwold 1 = here->NTRAxw 1;

here->NTRAxw2 = NTRAgetlnterpExcit2();
here->NTRAxyold = ckt->CKTgetSol(here->NTRAposNode2)

- ckt->CKTgetSol(here->NTRAnegNode2);
here->NTRAinput2 = G(2, here);
here->NTRAxwold2 = here->NTRAxw2;

here->oldtime = ckt->CKTtime;

NT RAgetlnte rp Excit 1

The following listing is of a function called NTRAInterpExcitl. The function is not

yet implemented.

#include "ntragetintexcit 1.h"

double NTRAgetlnterpExcit 1(NTRAinstance *here) {

int i;

double t 1, t2, t3;
double fl, f2, f3;
double excit 1;

i = NTRAgetDelTablndGrtr(ckt->CKTtime - here->NTRAtd);
tl = NTRAgetDelTabTime(i-2);
t2 = NTRAgetDelTabTime(i-1);
t3 = NTRAgetDelTabTime(i);

if((t2-tl)=---0 II (t3-t2) == 0) continue;

170

fl = (ckt->CKTtime - here->NTRAtd - t2) *
(ckt->CKTtime - here->NTRAtd - t3) ;

f2 = (ckt->CKTtime - here->NTRAtd - t I) *
(ckt->CKTtime - here->NTRAtd - t3) ;

f3 = (ckt->CKTtime - here->NTRAtd - t 1) *
(ckt->CKTtime - here->NTRAtd - t2) ;

if((t2-tl)==0) {/* should never happen, but don't want
* to divide by zero, EVER... */

fl=0;

f2=0;
} else {

fl/-- (tl-t2);
f2/= (t2-tl);

)
if((t3-t2)==0) {/* should never happen, but don't want

* to divide by zero, EVER... */
f2=0;
f3--0;

} else {
f2/= (t2-t3);
f3/= (t2-t3);

}
if((t3-tl)==0) {/* should never happen, but don't want

* to divide by zero, EVER... */
fl =0;
f2=0;

} else {
fl/= (tl-t3);
f3/= (tl-t3);

]

excitl = fl * NTRAgetDelTabExcl(i-2)
+ f2 * NTRAgetDelTabExc 1(i- 1)
+ f3 * NTRAgetDelTabExcl (i);

returnexcit 1;

D.5. NTRAgetDelTablndGrtr

The following listing is of a function called NTRAgetDelTabIndGrtr. The function

is not yet implemented.

#include "ntragetdtindg.h"

int NTRAgetDelTablndGrtr(double time) {

171

int i;

for(i=2; (i < NTRAgetDelTabSize() &&
NTRAgetDelTabTime(i) <= time); i++) {;

/* loop to determine the index of the time value just greater
than the value of time */

return i;

172

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[81

[9]

[10]

J.E. Schutte-Aine and R. Mittra, Modeling and Simulation of High-Speed

Digital Circuit Interconnections. Urbana, Illinois: Technical Report No.
88-2, Electromagnetic Communication Laboratory, Department of Electrical

and Computer Engineering, University of Illinois at Urbana-Champaign,
April 1988.

J. S. Roychowdry and D. O. Pederson, "Efficient transient simulation of

lossy interconnect," 28th ACM/IEEE Design Automation Conference, Paper
42.1, pp 740-745, 1991.

C. Warren, "Realizing a transmission line model," IEEE MICRO, vol., no.
pp 76-79, June 1990.

D.B. Kuznetsov and J. E. Schutt-Aine, Transmission Line Modeling and

Transient Simulation. Urbana, Illinois: Technical Report no. 92-4,
Electromagnetic Communication Laboratory, Department of Electrical and

Computer Engineering, University of Illinois at Urbana-Champaign,
December 1992.

T. L. Quarles, Adding Devices to SPICE3. Memorandum No. UCB/ERL

M89/45, Electronics Research Laboratory, College of Engineering,
University of California, Berkeley, CA 94720, April 1989.

T. L. Quarles, The Spice3 Implementation Guide. Memorandum No.

UCB/ERL M89/44, Electronics Research Laboratory, College of
Engineering, University of California, Berkeley, CA 94720, April 1989.

T. L. Quarles, Analysis of Performance and Convergence Issues for
Circuit Simulation. Memorandum No. UCB/ERL M89/42, Electronics

Research Laboratory, College of Engineering, University of California,
Berkeley, CA 94720, April 1989.

W. Christopher, J. Hsu, and T. 1. Quarles, A Short Introduction to

SPICE3. CAD Group U.C. Berkeley, May 1989.

B. Johnson, T. L. Quarles, A. R. Newton, D. O. Pederson, and A.

Sangiovanni-Vincentelli, SPICE3 Version 3e User's Manual. Department
of Electrical Engineering and Computer Sciences, University of California,
Berkeley, CA 94720, April 1991.

J. Hsu, Nutneg Programmer's Guide. document with SPICE3 Release

C 1, Electronics Research Laboratory, College of Engineering, University of
California, Berkeley, CA 94720, April 1989.

173

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

T. L. Quarles, Benchmark Circuits: Results for Spice3. Memorandum
No. UCB/ERL M89/47, Electronics Research Laboratory, College of

Engineering, University of California, Berkeley, CA 94720, April 1989.

H. Schildt, C the Complete Reference, 2nd ed. Berkeley, CA: Osborne
McGraw-Hill, 1990.

S. I. Pearson and G. J. Maler, Introductory Circuit Analysis. New York:

John Wiley and Sons, Inc., I960.

J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and

Design. New York: Van Nostrand Reinhold Co., 1983.

L. O. Chua and P. Lin, Computer-Aided Analysis of Electronic Circuits:

Algorithms and Computational Techniques. Englewood Cliffs, CA:
Prentice-Hall, 1975.

A. E. Ruehli, Circuit Analysis, Simulation and Design, Part I.
North-Holland (Elseviers Science Pub. Co.), 1987.

W. J. McCalla, Fundamentals of Computer-Aided Circuit Simulation.
Boston: Kluwar Academic Publishers, 1988.

B. Stroustrup, The C++ Programming Language 2nd Ed. Reading, MA:
Addison-Wesley, 1990.

M. G. Sobell, A Practical Guide to Unix System V. Redwood City, CA:
The Benjamin/Cummings Publishing Company, Inc., 1991.

